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The problem of symbolic summation
Let F(x) = (—1)"n%Jan(x) and S(x) = X2 Fu(x).
Given mixed-differential equations satisfied by Fp(x):

—2x(2n+1)(n+1)20x(Fn) + n®x*Fni1 + (n+1)%(8n® — x2 + 4n)F, = 0
n?(n+1)(2n+1)x*Fp 2+ () Farn +x2(n+1)(2n+ 3)(n+2)F, =0,

compute the minimal linear differential equation satisfied by S:
x202(S) — 2x0(S) + (x* +2)S = 0.
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The problem of symbolic summation
Let F(x) = (—1)"n%Jan(x) and S(x) = X2 Fu(x).
Given mixed-differential equations satisfied by Fp(x):

—2x(2n+1)(n+ 1)28X(F,,) +mx?Fpi1+ (n4+1)%(8n° —x*> +4n)F, =0
n?(n+1)(2n+1)x*Fpio + () For1 +x2(n+1)(2n +3)(n+ 2)2F, = 0,

compute the minimal linear differential equation satisfied by S:
X202(S) — 2x0x(S) + (X +2)S = 0.

Applications:
® Computation of closed forms

® Verification of identities

® Efficient numerical approximation of sums
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Examples of identity verifications

® An identity between binomials

LY =500 L) v

(n+2)3a(n+2) — (2n+3)(17n% +51n+39)a(n+ 1) + (n+ 1)3a(n) =0
® | egendre's generating series
ZP,, = (1—2xz+2%)71/2
(2xzfz —1)a,(y)+(x—2)y=0

® An Identity between special functions (here Bessel functions)

= (4n+1)(2n)Yjon(2) Pon(u
JO(Z 1—U2) = Z ( )(22n)(-’112')§ ) 2 ( )
202(y) +02(y) +z(1—u)y =0
(=02 +1)u(y) + 200, (y) =0

(Abramowitz/Stegun)
n=0
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Creative Telescoping for summation®
Fn(x) D-finite to be summed

Goal : find r, A; € Q(x) independent of n, and a function G such that

(Ar(x)9L + -+ -+ A1(x)0x + Ag) Fn(x) = G(n+1,x) — G(n,x).

telescoper G called certificate

1Zeilberger, Takayama, Chyzak, Koutschan, Chen ...
427



Creative Telescoping for summation®
Fn(x) D-finite to be summed

Goal : find r, A; € Q(x) independent of n, and a function G such that

(Ar(x)9L + -+ -+ A1(x)0x + Ag) Fn(x) = G(n+1,x) — G(n,x).

telescoper G called certificate

After summation w.r.t n we get:

(Ar(x)0% + -+ -+ A1(x)0x + Ap) i Fo(x) = G(N+1,x)— G(0,x).
n=0

often equals 0

~> Generalises to sums with more parameters and any Ore operator.

1Zeilberger, Takayama, Chyzak, Koutschan, Chen ...
427



Algol: Chyzak's algorithm (2000)
Recall F(x) = (—=1)"n?J2,(x) and S(x) = £ 1 Fp(x).

" Fix an order r and use an Ansatz:

; i(x)0L(F (ZQ,J n, x)0% (Fpy J)>

where A, (f) = f(n+1) — f(n).
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Algol: Chyzak's algorithm (2000)
Recall F(x) = (—=1)"n?J2,(x) and S(x) = £ Fp(x).

" Fix an order r and use an Ansatz:
Z Ai(x)0%(Fn) = An (a0(n, x)Fn(x) + a1 (n, x)Fri1(x))

where Ap(f) = f(n+1) —f(n).
Recall:

—2x(2n+1)(n+1)20x(Fn) + n®x*Fpi1 4+ (n+1)%(8n% — x2 +4n)F, = 0
n?(n+1)(2n+1)x2Frio + () Fri1 + x3(n+1)(2n +3)(n+ 2)2F, = 0,
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Algol: Chyzak's algorithm (2000)
Recall Fp(x) = (—1)"n?Jan(x) and S(x) = o1 Fa(x).
" Fix an order r and use an Ansatz:

(i<--.>m<x>>a<x>+ (i«..)m(x))aﬂ(x) = B (a0(n X)Fa(x) + 21 () P ()

i=0

where A, (f) = f(n+1) — f(n).
Recall:

—2x(2n+1)(n+ 1)20,(Fn) + n?x?Fni1 4+ (n4+1)%(8n% = x2 + 4n)F, =0
n?(n+1)(2n+1)x*Foi2+ () Fai1 + X3 (n+1)(2n+ 3)(n 4+ 2)?F, =0,
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Algol: Chyzak's algorithm (2000)
Recall F(x) = (—=1)"n?J2,(x) and S(x) = ¥ ; Fp(x).

U Fix an order r and use an Ansatz:

(i()A,(x)) Fo(x)+ <i())\,(x)> Frt1(x) = Ap (a0(n, x) Fp(x) 4 a1(n, x) Fatr1(x))

where A, (f) = f(n+1) — f(n).

All computations done we get a system of recurrences with parametric rhs:

(..)a1(n+1,x) —ag(n x) = ;()/\,(X)
ap(n+1,x)+(..)ar(n+1,x) —ai(nx) = io()/\,(x)

To conclude uncouple it and find rational solutions.
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Algo2: Koutschan's fast heuristic (2010)

" Guess the denominators Q; in the Ansatz and avoid uncoupling

4 N a0 (x)n' ap j(x)n'
Z Ai(x)a;“:n) =A, (Z C;)(;I<(n,)x) Fn<X) + (;il<<n'>x) Fn+1(x>>

i=0 i=0
where ag ;(x) and aj ;(x) are polynomials

® May not always return the minimal order equations

® A ot faster than Chyzak's algorithm
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Algo3: Reduction based Creative Telescoping®

¢ Decompose derivatives 9% (Fa(x)) modulo the image of A,:
® Fo(x) = Fa(x)
* O(Fo(x)) = 2B () 4 A (G1)
© R(Fa(x)) = BB =2 Falx) + An(G2)

And find a Q(x)-linear combination eliminating the term in F,(x):
X292 (Fn(x)) = 2x0x (Fn(x)) 4 (X% + 2) Fp(x) = Ap(x° Gy — 2xGy)
which after summation gives

x292(5) — 2x0,(S) + (x> +2)S =0

1

For D-finite integrals: Bostan-Chyzak-Lairez-Salvy, van der Hoeven, Chen-Du-Kauers

For sums: (D-finite) van der Hoeven, (P-finite) Chen-Du-Kauers

7/21



Algo 3: Pseudocode

0" Decompose derivatives 9. (F,(x)) modulo the image of A,

Require: a D-finite function Fj(x)
Ensure: a telescoper L and its associated certificate G
1: for i=0,1,2,...do
2. Decompose d',(F) = R;F + An(G;) with R; "minimal”
3: if there is a Q(x)-linear combination Y ;; a;R; = 0 then

4: return st,-ajaj,zjg,-aj@-
5. end if
6: end for

The algorithm generalizes to functions F with more parameters
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Reduction of derivatives modulo Im(A,)

Recall the equations:

—2x(2n+1)(n+1)20x(Fn) + n®x*Fni1 4+ (n+1)%(8n* — x2 +4n)F, = 0
n*(n+1)(2n+ 1)x*Fpio + () Fpi1 + X3 (n+1)(2n +3)(n+2)?F, = 0

Using these equations it is possible to decompose dx(F,) as follow:

n°x 8n% — x2 + 4n
Ix(Fn) = F, = T
x(Fa) 22n+ )+ 12 "1 k@1 "

[ (n—1)%x +8n2—x2+4n E
~\2n2(2n—-1) 2x(2n+1) "

+ 4, <<” ~ I)QX) Fn>

2n2(2n—1

It is possible to further reduce the coefficient in front of F, modulo Im(Ap,).

9/27



Lagrange’s identity
L(F) = Xl aSi(f) < L*(f) = ¥ ai(n—)S;7(f)
i=0
Lagrange's identity (Barrett, Dristy 1960)
Let u(n), v(n) be two sequences and L € Q(n, x)(S,) then
ul(v) — L*(u)v = Ap(Pr(u,v))

where P; is linear in v and v.
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Lagrange’s identity
L(F) = ErgdSi(f) = L'(F) = L ailn—)S;"(F)
=0
Lagrange's identity (Barrett, Dristy 1960)
Let u(n), v(n) be two sequences and L € Q(n, x)(S,) then
ul(v) — L*(u)v = Ap(Pr(u,v))

where P; is linear in v and v.

Take v = F,u € Q(n, x), and L minimal annihilating F, this identity gives

L*(u)F = Ap(—Pr(u, F))

Computing modulo Im(A,,) < computing modulo Im(L*)
For all R € Q(n, x)

RF € Im(Ap) if and only if R € L*(Q(n, x))
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Reduction by a difference operator

=Y pi(n,x)S,"
i=0

We want to define a Q(x)-linear map [.]: Q(n,x) — Q(n, x) such that
for all R € Q(n, x)

* [RI-ReL*(Q(nx))
* [L*(R)] =0
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Reduction of poles

Assume L* = YI_ pi(n,x)S, " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)

" Concentrate the poles in the yellow area

12/27



Reduction of poles

Assume L* = YI_ pi(n,x)S, " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)
+ : poles of L*(1/(n—(1/241i3/2))
Reduction step:

R—R-1L" <(n_(1/(én-|)-i3/2)m>
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Reduction of poles

Assume L* = YI_; pi(n,x)S,; " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)
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Reduction of poles

Assume L* = YI_ pi(n,x)S, " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)
+ : poles of L*(1/(n—(=1/2+41i3/2))
Reduction step:

R+ R—L* <(n - (_1</£)+ i3/2)D)
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Reduction of poles

Assume L* = YI_; pi(n,x)S,; " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)
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Reduction of poles

Assume L* = Y'_; pi(n,x)S; " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

X + | *

x : poles of R to be reduced by Im(L*)

+ : poles of L*(1/(n— (=3/2—i4/3))

() : not a pole of L*(1/(n— (—3/2—i4/3)) because
1/(n—(=1/2+1i3/2) is a singularity of pg
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Reduction of poles

Assume L* = YI_; pi(n,x)S; " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)
+ : poles of L*(1/(n— (—3/2 —i4/3)?)
Reduction step:

* ()
Rek-L ((n— (—2/2+i4/3)D+1)
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Reduction of poles

Assume L* = YI_; pi(n,x)S,; " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)
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Reduction of poles

Assume L* = YI_ pi(n,x)S, " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)
+ : poles of L*(1/(n—(=1/2—i4/3))

Reduction step:
R+ R—-L" < () )
(n—(-1/2—i4/3)H
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Reduction of poles

Assume L* = YI_ pi(n,x)S, " has order r =2 and R € Q(n, x) has all its
poles in C as a r.f. in n.

x : poles of R to be reduced by Im(L*)
+ : poles of L*(1/(n—(=1/2—i4/3))

A st enough 7 No !
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Strong reduction of poles

Let [.]w be the reduction procedure described previously

O x| x

Ol x| x

x : poles of L*(1/(n—w)), a root of pg(n) or p,(n— r) of order n,
(): not a pole because of a cancelation

E = Vectg{[L*(1/(n— )N]w | i < ng}

Stong reduction: reduce [R],, modulo E
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Reduction of polynomials

Similar (skipped)
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Timing 1. (mostly) special functions

HF-CT | HF-FCT || redctsum
21 easy examples | 10.0s 9.2s 2.4s
eq. (1) 99s 50s 1.2s
eq. (2) 2138s 44s 13.8s
eq. (3) 63s 1.6s 39s
eq. (4) 4.5s 1.4s 61s
eq. (5) >1h 3.2s(*) >1h
eq. (6) >1h 108s(*) >1h
eq. (7) >1h > 1h 1.2s

3 (4n+1)(2n)1V27

n1222n /x

Jont1/2(x) Pan(u)

(4)
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Timing 1. (mostly) special functions

)

(6)

HF-CT | HF-FCT || redctsum
easy examples | 10.0s 9.2s 2.4s
eq. (1) 99s 50s 1.2s
eq. (2) 2138s 44s 13.8s
eq. (3) 63s 1.6s 39s
eq. (4) 4.5s 1.4s 61s
eq. (5) >1h 3.25(*) >1h
eq. (6) >1h 108s(*) >1h
eq. (7) >1h > 1h 1.2s

EPn(X)Pn(Y)Pn(Z)
(a+b+1)k  ,(ab) (a,b)
Xk:m ()T ()
4x +2
&

(45x + 5y + 10z + 47)(45x + 5y + 10z + 2)(63x — by + 2z + 58)(63x — 5y + 2z — 5)

™
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Timing 2: Gillis-Reznick-Zeilberger sequence

5=)

n(=1)k(rm— (r—1)k)!(r!)k

k=0

(n—k)!"k!

Telescoper of order r and degree r(r —1)/2

HF-CT | HF-FCT || redctsum
Se | 1l1s 64s 0.4s
S7 | 32s 331s 0.9s
Sg | 106s 1044s 2s
So | 325s 3341s 5s
S10 | 1035s >1h 8s
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Links

arxiv link: https://arxiv.org/abs/2307.07216
github link: https://github.com/HBrochet/CreativeTelescoping
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