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A symbolic integration problem

dxdyd
Let I(t) = X ay 62 (g.f. of Apéry numbers)
1—(1—xy)z—txyz(1 —x)(1 —y)(1 - 2)

The objective is to compute a linear differential equation (LDE) for /:

2*l ol
t2(£* — 34t + 1) 7 + 3t(2F —51t+1)—+(7t _112t+1)8t

pre +(t—5)=0.
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A symbolic integration problem

dxdyd
Let I(t) = X ay 62 (g.f. of Apéry numbers)
1—(1—xy)z—txyz(1 —x)(1 —y)(1 - 2)

The objective is to compute a linear differential equation (LDE) for /:

3
2(t° —34t+1)ﬂ—|—3t(2t —51t+1)—+(7t —112t—|—1)g

prS +(t-5)I=0.

With this LDE it is possible to
1. compute a series expansion at any points,
2. evaluate the integral numerically to arbitrary precision,

3. prove identities involving /(t).
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The method of Creative Telescoping
Write x = x1,..., %, and let I(t) = § f(x, t)dx.

Creative telescoping (multivariate integration w.r.t x)

Find £ € N, a1, ..., a, € K(t) and functions gi. ..., g, s.t.

O (x, of (x, = 0gi(x,
az(t)% qF 000 R 31@)% +ao(t)f(x,t) = ; ga(—xlt)
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The method of Creative Telescoping
Write x = x1,...,x, and let I(t) = § f(x, t)d

Creative telescoping (multivariate integration w.r.t x)

Find £ € N, a1, ..., a, € K(t) and functions gi. ..., g, s.t.

Y4 x X n (X,
az(t)ag(tl’t) +o+ al(t)afgt’t) +ao(t)f(x,t) =3 9gi(x, t)

After integration, we obtain

¢ X,
ag(t)aalgzt) +-F al(t)ag(:) + ao(t)I(t) = 27{ E)ggX’t)dx.

equals 0
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Algebra of Differential Operators: Weyl algebra

The n-th Weyl algebra W,, over K is

® generated by the variables xy,...,x,,01,...,0, and
® subject to the relations [0, x;] = 1 and [x;, xj] = [x;, 9;] = [0;,0;] = 0 for i # j

The homogeneous linear differential equation with polynomial coefficients

&y 2 1 Oy
1)—=L —
6X18X2 + (X + )8X1 + y 0

X1

is represented in W, by
x1010> + (X2 + 1)(91 + 1.
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Holonomy

Holonomic function

A function f(x) is holonomic if for each 0; if it satisfies a LODE with polynomial
coefficients in K[x].

Annihilator of f

The set ann(f) & {L € W, | L- f = 0} is a left ideal of W,.

Link between functions and operators
f is characterized by its annihilator: W, - f ~ W,/ ann(f).
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Input of the algorithm
Let I(t) = § f(x, t)dx

Assumptions
1. f is holonomic
2. The integration domain has no boundary

3. f has no singularities on the integration domain
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Input of the algorithm
Let I(t) = § f(x, t)dx

Assumptions
1. f is holonomic
2. The integration domain has no boundary

3. f has no singularities on the integration domain

Data-structure for f: (separate 9; from 01,...,0p)

Assume we know generators of ann(f) in the algebra W), over K(t) and a derivation
map 9; : W, — W, satisfying

Ot(Am) = %m + Ad¢(m)  for A € K(t) and m € W,
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Example of Input

Example

Let f(x,t) = %4 which is annihilated by

O+ 0x and  Ox(x —t).

Then f is represented by the ideal in Wj:
Wl (8X(X - t))a
and the derivation map 0; : Wi — Wj is defined by

0p(x?07) = —x*OPH1.
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Algebraic analog of creative telescoping

Recall: creative telescoping
Look for a LHS such that there exists functions gi,...,g, € W, - f satisfying

f (x ™ 0igi(x,
ag(t)afa(t[’t)+---+ao(t)f(x,t):za‘lga()qﬂ.

i=1

Algebraic formulation
Find coefficients ay, ..., ap € K(t) satisfying

ar(t)0L(1) 4 - - - + ao(t) € ann(f) + i@;Wn.
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Algebraic analog of creative telescoping

Recall: creative telescoping

Look for a LHS such that there exists functions g1, ..., g, € W, - f satisfying
o'f(x,t) " 9igi(x, t)
ag(t)w + -+ ao(t)f(x, t) = ; TXI
Algebraic formulation
Find coefficients ay, ..., ap € K(t) satisfying
a(£)05(1) + - + ao(t) € ann(f) + AW,

Theorem (Kashiwara)

If f is holonomic, then W, /(ann(f) + 8W,) is a finite-dimensional vector space.
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Computing in W, /(ann(f) + 8W,)

Main difficulties:

e ann(f)+ OW, is the sum of a left and a right module = no module structure
= no natural module structure on the sum

® Even though W, /(ann(f) 4+ @W,) is finite-dimensional,
W, and ann(f) + 8W, are not!
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Takayama's algorithm
¢" Work in W, by increasing degree:

Fo= P K-x"9°
lal+]81<q

Takayama's algorithm 1990 (without parameters)

Fix g and approximate the quotient W,/(ann(f) + 8W,) by
Fq/(ann(f) N Fq + 0Fg-1)

which is a quotient of two finite-dimensional K(t)-vector spaces.

Termination criterion
A bound on g to get a basis of W,,/(ann(f)+ 8W,) can be deduced from the roots of
the b-function (Oaku-Takayama 1997). However, it is costly to compute.
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Reduction-based creative telescoping
Goal: Construct a K(t)-linear map [.]: W, = W, s.t.
® a—[a] € ann(f) + W, (reduction)

e [a] = 0iff a € ann(f) + OW, (normal form)
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Reduction-based creative telescoping
Goal: Construct a K(t)-linear map [.]: W, = W, s.t.
® a—[a] € ann(f) + W, (reduction)

e [a] = 0iff a € ann(f) + OW, (normal form)

Creative telescoping algorithm

po < [1]; ¢+ 0

=

> while there is no K(t)-linear relation Y% \jp; =0

3 pesr1 < [0e(pe)]  # invariant: py = [0£(1)] mod ann(f) + dW,
+—1+1

5 return Y5 \;0)

N

© Always terminates as W, /(ann(f) + &W,) is finite-dimensional!
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A first reduction

U" Use more structure of ann(f) + W,

Reduction procedure [.] : W, — W,

1 repeat
2 a<+ a mod oW,
3 a <+ a mod ann(f)

4 until no term in a can be further reduced

5 return a

The reduction [.] does not reduce all ann(f) + W, to zero
© But dim([(ann(f) + OW,)] N Fy) < dim((ann(f) + W,) N Fy)
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Critical pairs
What does [ann(f) + W] look like ?
It is generated by terms a + d with It(a) = —It(d) and a € ann(f),d € W,
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It is generated by terms a + d with It(a) = —It(d) and a € ann(f),d € W,
Example
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Critical pairs
What does [ann(f) + W] look like ?
It is generated by terms a + d with It(a) = —It(d) and a € ann(f),d € W,

Example

Take f = eX’27° a Grobner basis of ann(f) for grevlex(x, y, z) > grevlex(dy, 0y, 0;) is

2£_6X7 3L2+aY7 Lz_az
42°0, + 2z — 92, xOyx — 220,

For example z is irreducible by [.] but

z= —%(4z2az +2z - 92) + %(4azz2 )

€ann(f) coW, 13/19



The family of reduction [.],,

A [ann(f) + OW,] may not be a finite-dimensional vector space
Fix a monomial order < on W, and let  be a monomial of W,,.

~» Compute instead a basis of

E<, ={la+d] | a € ann(f),d € W, max(Im(a), Im(d)) <n}
={[a] | a € ann(f),Im(a) < n}

Critical pair criterion
Let a € ann(f). If there exists b € ann(f) and i s.t. Im(a) = Im(9;b), then [a] € E_,.

14/19



The family of reduction [.],,

Algorithm for computing Ex,

1 B+ 0

2> for each monomial ' <7 in Im(ann(f)) NIm(8W,)
3 if there exists / and b € ann(f) s.t. ' = Im(9;b)
4 continue

5 pick a € ann(f) s.t. Im(a) =7/
6 B+ BU{[a]}

7 return Echelon(B)
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The family of reduction [.],,

Algorithm for computing Ex,

1 B+ 0

2> for each monomial ' <7 in Im(ann(f)) NIm(8W,)
3 if there exists / and b € ann(f) s.t. ' = Im(9;b)
4 continue

5 pick a € ann(f) s.t. Im(a) =7/
6 B+ BU{[a]}

7 return Echelon(B)

Define: [a], := [a] mod Eg,
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Final algorithm

Creative telescoping algorithm

1 Choose 7 smartly (not presented today!)

2 po 1]y €40

5 while there is no K(t)-linear relation -¢_o Aipi = 0

4 pes1 < [0e(pe)ly,  # invariant: p, = [05(1)], mod ann(f) + W,
5 l+—0+1

6 return Y5 \;0i

© Always terminates even though [.],, is not a normal form.

© The returned LDE may not be of minimal order.
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Application: counting k-regular graphs
k-regular graph: every vertex has degree k

Problem statement

c,(,k): number of k-regular graphs on n vertices.

X (k)
Goal: compute a LDE for > C,';T t" for fixed k
n=0

Petersen’s graph is 3-regular
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Application: counting k-regular graphs
k-regular graph: every vertex has degree k

Problem statement

(k)

Cn
x (k)

Goal: compute a LDE for > C,’;T t" for fixed k
n=0

: number of k-regular graphs on n vertices.

Petersen’s graph is 3-regular
Previous work
Read (1959): up to k =3
® McKay, Wormald (=~ 1959): k =4
® Chyzak, Mishna, Salvy (2005): k = 4 using C.T.}
A 4-regular graph ® Chyzak, Mishna (2025): up to k = 7 using red.-based C.T.}

Ut is actually a variant of creative telescoping for scalar products of symmetric functions
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Application: counting k-regular graphs
~~ Building on Chyzak-Mishna-Salvy (2005) we obtained

where F is a series in K[[x]][x"1]((t)) implicitly represented by an ideal
I € K(t)[x](O¢, Ox) satisfying for any L € I, resy L(F) = 0.
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Application: counting k-regular graphs
~~ Building on Chyzak-Mishna-Salvy (2005) we obtained

where F is a series in K[[x]][x"1]((t)) implicitly represented by an ideal
I € K(t)[x](O¢, Ox) satisfying for any L € I, resy L(F) = 0.

Example

For k =2, I is generated by

(t—l)Xl—tal, Xo — t
2(t — 1)%0; — 92 +2(t — 1)%0, + t2(t — 1)

and we obtain the LDE
2(t — 1)d; + t°.
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Benchmarks

Because of the polynomials in the ideal /, no creative telescoping algorithms over
Q(t,x) work here!

k 2 3 4 5 6 7 8

Tak-Macaulay2 | 0.02s 1.7s  535s >90m - - -
Tak-Singular <ls <l1ls 25s >90m - - -
Ch/Mi-Maple? 0.04 0.08 0.2 1.96 52.3s 9h -

Our algo-Julial? | 7.2s 7.6s 8.7s 7.09s 8.5s  363s 7h28min

!Results available at https://files.inria.fr/chyzak/kregs/

2Code available at https://github.com/HBrochet/MultivariateCreativeTelescoping.jl
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