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A symbolic integration problem

Let I(t) =
*

dx dy dz
1− (1− xy)z − txyz(1− x)(1− y)(1− z) (g.f. of Apéry numbers)

The objective is to compute a linear differential equation (LDE) for I:

t2(t2 − 34t + 1) ∂3I
∂t3 + 3t(2t2 − 51t + 1) ∂2I

∂t2 + (7t2 − 112t + 1) ∂I
∂t + (t − 5)I = 0.

With this LDE it is possible to

1. compute a series expansion at any points,

2. evaluate the integral numerically to arbitrary precision,

3. prove identities involving I(t).
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The method of Creative Telescoping
Write x = x1, . . . , xn and let I(t) =

∮
f (x, t)dx.

Creative telescoping (multivariate integration w.r.t x)
Find ℓ ∈N, a1, . . . , aℓ ∈ K(t) and functions g1, . . . , gn s.t.

aℓ(t)∂ℓf (x, t)
∂tℓ

+ · · ·+ a1(t)∂f (x, t)
∂t + a0(t)f (x, t) =

n∑
i=1

∂gi(x, t)
∂xi

.

After integration, we obtain

aℓ(t)∂ℓI(t)
∂tℓ

+ · · ·+ a1(t)∂I(t)
∂t + a0(t)I(t) =

n∑
i=1

∮
∂gi(x, t)

∂xi
dx.︸                    ︷︷                    ︸

equals 0
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Algebra of Differential Operators: Weyl algebra

The n-th Weyl algebra Wn over K is
• generated by the variables x1, . . . , xn, ∂1, . . . , ∂n and
• subject to the relations [∂i , xi ] = 1 and [xi , xj ] = [xi , ∂j ] = [∂i , ∂j ] = 0 for i , j

The homogeneous linear differential equation with polynomial coefficients

x1
∂2y

∂x1∂x2
+ (x2 + 1) ∂y

∂x1
+ y = 0

is represented in W2 by
x1∂1∂2 + (x2 + 1)∂1 + 1.
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Holonomy

Holonomic function
A function f (x) is holonomic if for each ∂i if it satisfies a LODE with polynomial
coefficients in K[x].

Annihilator of f

The set ann(f ) def= {L ∈Wn | L · f = 0} is a left ideal of Wn.

Link between functions and operators
f is characterized by its annihilator: Wn · f 'Wn/ ann(f ).
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Input of the algorithm
Let I(t) =

∮
f (x, t)dx

Assumptions
1. f is holonomic
2. The integration domain has no boundary
3. f has no singularities on the integration domain

Data-structure for f : (separate ∂t from ∂1, . . . , ∂n)
Assume we know generators of ann(f ) in the algebra Wn over K(t) and a derivation
map ∂t : Wn →Wn satisfying

∂t(λm) = ∂λ

∂t m + λ∂t(m) for λ ∈ K(t) and m ∈Wn

6 / 19



Input of the algorithm
Let I(t) =

∮
f (x, t)dx

Assumptions
1. f is holonomic
2. The integration domain has no boundary
3. f has no singularities on the integration domain

Data-structure for f : (separate ∂t from ∂1, . . . , ∂n)
Assume we know generators of ann(f ) in the algebra Wn over K(t) and a derivation
map ∂t : Wn →Wn satisfying

∂t(λm) = ∂λ

∂t m + λ∂t(m) for λ ∈ K(t) and m ∈Wn

6 / 19



Example of Input

Example
Let f (x , t) = 1

x−t , which is annihilated by

∂t + ∂x and ∂x (x − t).

Then f is represented by the ideal in W1:

W1
(
∂x (x − t)

)
,

and the derivation map ∂t : W1 →W1 is defined by

∂t(xa∂b
x ) = −xa∂b+1

x .
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Algebraic analog of creative telescoping

Recall: creative telescoping
Look for a LHS such that there exists functions g1, . . . , gn ∈Wn · f satisfying

aℓ(t)∂ℓf (x, t)
∂tℓ

+ · · ·+ a0(t)f (x, t) =
n∑

i=1

∂igi(x, t)
∂xi

.

Algebraic formulation
Find coefficients aℓ, . . . , a0 ∈ K(t) satisfying

aℓ(t)∂ℓ
t (1) + · · ·+ a0(t) ∈ ann(f ) +

n∑
i=1

∂iWn.
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Computing in Wn/(ann(f ) + ∂Wn)

Main difficulties:

• ann(f ) + ∂Wn is the sum of a left and a right module =⇒ no module structure
⇒ no natural module structure on the sum

• Even though Wn/(ann(f ) + ∂Wn) is finite-dimensional,
Wn and ann(f ) + ∂Wn are not!

9 / 19



Takayama’s algorithm
Work in Wn by increasing degree:

Fq =
⊕

|α|+|β|≤q
K · xα∂β.

Takayama’s algorithm 1990 (without parameters)
Fix q and approximate the quotient Wn/(ann(f ) + ∂Wn) by

Fq/(ann(f ) ∩ Fq + ∂Fq−1)

which is a quotient of two finite-dimensional K(t)-vector spaces.

Termination criterion
A bound on q to get a basis of Wn/(ann(f ) + ∂Wn) can be deduced from the roots of
the b-function (Oaku-Takayama 1997). However, it is costly to compute.
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Reduction-based creative telescoping
Goal: Construct a K(t)-linear map [ . ] : Wn →Wn s.t.
• a − [a] ∈ ann(f ) + ∂Wn (reduction)

• [a] = 0 iff a ∈ ann(f ) + ∂Wn (normal form)

Creative telescoping algorithm

1 p0 ← [1]; ℓ← 0
2 while there is no K(t)-linear relation

∑ℓ
i=0 λipi = 0

3 pℓ+1 ← [∂t(pℓ)] # invariant: pℓ ≡ [∂ℓ
t (1)] mod ann(f ) + ∂Wn

4 ℓ← ℓ + 1
5 return

∑ℓ
i=0 λi∂

i
t

Always terminates as Wn/(ann(f ) + ∂Wn) is finite-dimensional!
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A first reduction

Use more structure of ann(f ) + ∂Wn

Reduction procedure [.] : Wn 7→Wn

1 repeat
2 a← a mod ∂Wn

3 a← a mod ann(f )
4 until no term in a can be further reduced
5 return a

The reduction [.] does not reduce all ann(f ) + ∂Wn to zero

But dim([(ann(f ) + ∂Wn)] ∩ Fq)� dim((ann(f ) + ∂Wn) ∩ Fq)
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Critical pairs
What does [ann(f ) + ∂Wn] look like ?
It is generated by terms a + d with lt(a) = − lt(d) and a ∈ ann(f ), d ∈ ∂Wn

Example

Take f = ex2z−y3 , a Gröbner basis of ann(f ) for grevlex(x , y , z) > grevlex(∂x , ∂y , ∂z) is

2xz − ∂x , 3y2 + ∂y , x2 − ∂z

4z2∂z + 2z − ∂2
x , x∂x − 2z∂z

For example z is irreducible by [.] but

z = −1
6(4z2∂z + 2z − ∂2

x )︸                        ︷︷                        ︸
∈ann(f )

+ 1
6(4∂zz2 − ∂2

x )︸               ︷︷               ︸
∈∂Wn
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The family of reduction [.]η

[ann(f ) + ∂Wn] may not be a finite-dimensional vector space

Fix a monomial order ≼ on Wn and let η be a monomial of Wn.

⇝ Compute instead a basis of

E≼η B{[a + d ] | a ∈ ann(f ), d ∈ ∂Wn, max(lm(a), lm(d)) ≼ η}
={[a] | a ∈ ann(f ), lm(a) ≼ η}

Critical pair criterion
Let a ∈ ann(f ). If there exists b ∈ ann(f ) and i s.t. lm(a) = lm(∂ib), then [a] ∈ E≺η.

14 / 19



The family of reduction [.]η

Algorithm for computing E≼η

1 B ← ∅
2 for each monomial η′ ≼ η in lm(ann(f )) ∩ lm(∂Wn)
3 if there exists i and b ∈ ann(f ) s.t. η′ = lm(∂ib)
4 continue
5 pick a ∈ ann(f ) s.t. lm(a) = η′

6 B ← B ∪ {[a]}
7 return Echelon(B)

Define: [a]η B [a] mod E≼η
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Final algorithm

Creative telescoping algorithm

1 Choose η smartly (not presented today!)
2 p0 ← [1]η; ℓ← 0
3 while there is no K(t)-linear relation

∑ℓ
i=0 λipi = 0

4 pℓ+1 ← [∂t(pℓ)]η # invariant: pℓ ≡ [∂ℓ
t (1)]η mod ann(f ) + ∂Wn

5 ℓ← ℓ + 1
6 return

∑ℓ
i=0 λi∂

i
t

Always terminates even though [.]η is not a normal form.

The returned LDE may not be of minimal order.
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Application: counting k-regular graphs
k-regular graph: every vertex has degree k

Problem statement

c(k)
n : number of k-regular graphs on n vertices.

Goal: compute a LDE for
∞∑

n=0

c(k)
n
n! tn for fixed k

Petersen’s graph is 3-regular

A 4-regular graph

Previous work
• Read (1959): up to k = 3
• McKay, Wormald (≈ 1959): k = 4
• Chyzak, Mishna, Salvy (2005): k = 4 using C.T.1

• Chyzak, Mishna (2025): up to k = 7 using red.-based C.T.1
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1It is actually a variant of creative telescoping for scalar products of symmetric functions
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Application: counting k-regular graphs
⇝ Building on Chyzak-Mishna-Salvy (2005) we obtained

∞∑
n=0

c(k)
n
n! tn = resx F (t, x)

where F is a series in K[[x]][x−1]((t)) implicitly represented by an ideal
I ⊂ K(t)[x]〈∂t , ∂x〉 satisfying for any L ∈ I, resx L(F ) = 0.

Example
For k = 2, I is generated by

(t − 1)x1 − t∂1, x2 − t
2(t − 1)2∂t − ∂2

1 + 2(t − 1)2∂2 + t2(t − 1)

and we obtain the LDE
2(t − 1)dt + t2.
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Benchmarks
Because of the polynomials in the ideal I, no creative telescoping algorithms over
Q(t, x) work here!

k 2 3 4 5 6 7 8

Tak-Macaulay2 0.02s 1.7s 535s >90m - - -

Tak-Singular <1s <1s 25s >90m - - -

Ch/Mi-Maple1 0.04 0.08 0.2 1.96 52.3s 9h -

Our algo-Julia12 7.2s 7.6s 8.7s 7.9s 8.5s 363s 7h28min

1Results available at https://files.inria.fr/chyzak/kregs/
2Code available at https://github.com/HBrochet/MultivariateCreativeTelescoping.jl
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