Faster Multivariate Integration in D-modules

Hadrien Brochet

Joint work with Frédéric Chyzak and Pierre Lairez

Ínría_

ACA 2025 - AADIOS session

July 15, 2025

https://arxiv.org/abs/2504.12724

A symbolic integration problem

Let
$$I(t) = \iiint \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a linear differential equation (LDE) for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3}I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2}I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

A symbolic integration problem

Let
$$I(t) = \iiint \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a linear differential equation (LDE) for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3} I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2} I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

With this LDE it is possible to

- 1. compute a series expansion at any points,
- 2. evaluate the integral numerically to arbitrary precision,
- 3. prove identities involving I(t).

The method of Creative Telescoping

Write $\mathbf{x} = x_1, \dots, x_n$ and let $I(t) = \oint f(\mathbf{x}, t) d\mathbf{x}$.

Creative telescoping (multivariate integration w.r.t x)

Find $\ell \in \mathbb{N}, a_1, \dots, a_\ell \in \mathbb{K}(t)$ and functions g_1, \dots, g_n s.t.

$$a_{\ell}(t)\frac{\partial^{\ell}f(\mathbf{x},t)}{\partial t^{\ell}}+\cdots+a_{1}(t)\frac{\partial f(\mathbf{x},t)}{\partial t}+a_{0}(t)f(\mathbf{x},t)=\sum_{i=1}^{n}\frac{\partial g_{i}(\mathbf{x},t)}{\partial x_{i}}.$$

The method of Creative Telescoping

Write $\mathbf{x} = x_1, \dots, x_n$ and let $I(t) = \oint f(\mathbf{x}, t) d\mathbf{x}$.

Creative telescoping (multivariate integration w.r.t x)

Find $\ell \in \mathbb{N}, a_1, \dots, a_\ell \in \mathbb{K}(t)$ and functions g_1, \dots, g_n s.t.

$$a_{\ell}(t)\frac{\partial^{\ell}f(\mathbf{x},t)}{\partial t^{\ell}}+\cdots+a_{1}(t)\frac{\partial f(\mathbf{x},t)}{\partial t}+a_{0}(t)f(\mathbf{x},t)=\sum_{i=1}^{n}\frac{\partial g_{i}(\mathbf{x},t)}{\partial x_{i}}.$$

After integration, we obtain

$$a_{\ell}(t)\frac{\partial^{\ell}I(t)}{\partial t^{\ell}} + \cdots + a_{1}(t)\frac{\partial I(t)}{\partial t} + a_{0}(t)I(t) = \underbrace{\sum_{i=1}^{n} \oint \frac{\partial g_{i}(\mathbf{x},t)}{\partial x_{i}}d\mathbf{x}}_{\text{equals 0}}.$$

Algebra of Differential Operators: Weyl algebra

The *n*-th Weyl algebra W_n over \mathbb{K} is

- generated by the variables $x_1, \ldots, x_n, \partial_1, \ldots, \partial_n$ and
- subject to the relations $[\partial_i, x_i] = 1$ and $[x_i, x_j] = [x_i, \partial_j] = [\partial_i, \partial_j] = 0$ for $i \neq j$

The homogeneous linear differential equation with polynomial coefficients

$$x_1 \frac{\partial^2 y}{\partial x_1 \partial x_2} + (x^2 + 1) \frac{\partial y}{\partial x_1} + y = 0$$

is represented in W_2 by

$$x_1\partial_1\partial_2+(x^2+1)\partial_1+1.$$

Holonomy

Holonomic function

A function $f(\mathbf{x})$ is holonomic if for each ∂_i if it satisfies a LODE with polynomial coefficients in $\mathbb{K}[\mathbf{x}]$.

Annihilator of f

The set $ann(f) \stackrel{\text{def}}{=} \{L \in W_n \mid L \cdot f = 0\}$ is a left ideal of W_n .

Link between functions and operators

f is characterized by its annihilator: $W_n \cdot f \simeq W_n / \operatorname{ann}(f)$.

Input of the algorithm

Let
$$I(t) = \oint f(\mathbf{x}, t) d\mathbf{x}$$

Assumptions

- 1. f is holonomic
- 2. The integration domain has no boundary
- 3. f has no singularities on the integration domain

Input of the algorithm

Let
$$I(t) = \oint f(\mathbf{x}, t) d\mathbf{x}$$

Assumptions

- 1. f is holonomic
- 2. The integration domain has no boundary
- 3. f has no singularities on the integration domain

Data-structure for f: (separate ∂_t from $\partial_1, \ldots, \partial_n$)

Assume we know generators of ann(f) in the algebra W_n over $\mathbb{K}(t)$ and a derivation map $\partial_t:W_n\to W_n$ satisfying

$$\partial_t(\lambda m) = rac{\partial \lambda}{\partial t} m + \lambda \partial_t(m)$$
 for $\lambda \in \mathbb{K}(t)$ and $m \in W_n$

Example of Input

Example

Let $f(x,t) = \frac{1}{x-t}$, which is annihilated by

$$\partial_t + \partial_x$$
 and $\partial_x (x - t)$.

Then f is represented by the ideal in W_1 :

$$W_1(\partial_x(x-t)),$$

and the derivation map $\partial_t:W_1 o W_1$ is defined by

$$\partial_t(x^a\partial_x^b) = -x^a\partial_x^{b+1}.$$

Algebraic analog of creative telescoping

Recall: creative telescoping

Look for a LHS such that there exists functions $g_1, \ldots, g_n \in W_n \cdot f$ satisfying

$$a_{\ell}(t)\frac{\partial^{\ell}f(\mathbf{x},t)}{\partial t^{\ell}}+\cdots+a_{0}(t)f(\mathbf{x},t)=\sum_{i=1}^{n}\frac{\partial_{i}g_{i}(\mathbf{x},t)}{\partial x_{i}}.$$

Algebraic formulation

Find coefficients $a_{\ell}, \ldots, a_0 \in \mathbb{K}(t)$ satisfying

$$a_{\ell}(t)\partial_t^{\ell}(1)+\cdots+a_0(t)\in \operatorname{ann}(f)+\sum_{i=1}^n\partial_iW_n.$$

Algebraic analog of creative telescoping

Recall: creative telescoping

Look for a LHS such that there exists functions $g_1, \ldots, g_n \in W_n \cdot f$ satisfying

$$a_{\ell}(t)\frac{\partial^{\ell} f(\mathbf{x},t)}{\partial t^{\ell}} + \cdots + a_{0}(t)f(\mathbf{x},t) = \sum_{i=1}^{n} \frac{\partial_{i} g_{i}(\mathbf{x},t)}{\partial x_{i}}.$$

Algebraic formulation

Find coefficients $a_{\ell}, \ldots, a_0 \in \mathbb{K}(t)$ satisfying

$$a_{\ell}(t)\partial_t^{\ell}(1)+\cdots+a_0(t)\in \operatorname{ann}(f)+\partial W_n.$$

Algebraic analog of creative telescoping

Recall: creative telescoping

Look for a LHS such that there exists functions $g_1, \ldots, g_n \in W_n \cdot f$ satisfying

$$a_{\ell}(t)\frac{\partial^{\ell} f(\mathbf{x},t)}{\partial t^{\ell}} + \cdots + a_{0}(t)f(\mathbf{x},t) = \sum_{i=1}^{n} \frac{\partial_{i} g_{i}(\mathbf{x},t)}{\partial x_{i}}.$$

Algebraic formulation

Find coefficients $a_\ell,\ldots,a_0\in\mathbb{K}(t)$ satisfying

$$a_{\ell}(t)\partial_t^{\ell}(1)+\cdots+a_0(t)\in \operatorname{ann}(f)+\partial W_n.$$

Theorem (Kashiwara)

If f is holonomic, then $W_n/(\operatorname{ann}(f) + \partial W_n)$ is a finite-dimensional vector space.

Computing in $W_n/(\operatorname{ann}(f) + \partial W_n)$

Main difficulties:

- $\operatorname{ann}(f) + \partial W_n$ is the sum of a left and a right module \Longrightarrow no module structure \Longrightarrow no natural module structure on the sum
- Even though $W_n/(\operatorname{ann}(f) + \partial W_n)$ is finite-dimensional, W_n and $\operatorname{ann}(f) + \partial W_n$ are not!

Takayama's algorithm

 \forall Work in W_n by increasing degree:

$$F_q = \bigoplus_{|\alpha|+|\beta| \leq q} \mathbb{K} \cdot \mathbf{x}^{\alpha} \boldsymbol{\partial}^{\beta}.$$

Takayama's algorithm 1990 (without parameters)

Fix q and approximate the quotient $W_n/(\operatorname{ann}(f) + \partial W_n)$ by

$$F_q/(\mathsf{ann}(f)\cap F_q+\partial F_{q-1})$$

which is a quotient of two finite-dimensional $\mathbb{K}(t)$ -vector spaces.

Termination criterion

A bound on q to get a basis of $W_n/(\operatorname{ann}(f) + \partial W_n)$ can be deduced from the roots of the b-function (Oaku-Takayama 1997). However, it is costly to compute.

Reduction-based creative telescoping

Goal: Construct a $\mathbb{K}(t)$ -linear map $[\,.\,]:W_n o W_n$ s.t.

•
$$a - [a] \in ann(f) + \partial W_n$$
 (reduction)

•
$$[a] = 0$$
 iff $a \in ann(f) + \partial W_n$ (normal form)

Reduction-based creative telescoping

Goal: Construct a $\mathbb{K}(t)$ -linear map $[.]:W_n \to W_n$ s.t.

•
$$a - [a] \in ann(f) + \partial W_n$$
 (reduction)

• [a] = 0 iff $a \in ann(f) + \partial W_n$ (normal form)

Creative telescoping algorithm

- $p_0 \leftarrow [1]; \quad \ell \leftarrow 0$
- while there is no $\mathbb{K}(t)$ -linear relation $\sum_{i=0}^{\ell} \lambda_i p_i = 0$
 - $p_{\ell+1} \leftarrow [\partial_t(p_\ell)] \quad \#$ invariant: $p_\ell \equiv [\partial_t^\ell(1)] \mod \mathsf{ann}(f) + \partial W_n$
- $\ell \leftarrow \ell + 1$
- 5 return $\sum_{i=0}^{\ell} \lambda_i \partial_t^i$
- Always terminates as $W_n/(\operatorname{ann}(f) + \partial W_n)$ is finite-dimensional!

A first reduction

 \forall Use more structure of $ann(f) + \partial W_n$

```
Reduction procedure [.] : W_n \mapsto W_n
```

- 1 repeat
 - $a \leftarrow a \mod \partial W_n$
- $a \leftarrow a \mod \operatorname{ann}(f)$
- 4 **until** no term in a can be further reduced
- 5 return a
- \bigcirc The reduction [.] does not reduce all $ann(f) + \partial W_n$ to zero
- $igoplus \operatorname{But\ dim}([(\operatorname{ann}(f)+\partial W_n)]\cap F_q)\ll \operatorname{dim}((\operatorname{ann}(f)+\partial W_n)\cap F_q)$

Critical pairs

What does $[ann(f) + \partial W_n]$ look like?

It is generated by terms a+d with $\operatorname{lt}(a)=-\operatorname{lt}(d)$ and $a\in\operatorname{ann}(f),d\in\partial W_n$

Critical pairs

What does
$$[ann(f) + \partial W_n]$$
 look like?

It is generated by terms a+d with $\operatorname{lt}(a)=-\operatorname{lt}(d)$ and $a\in\operatorname{ann}(f), d\in\partial W_n$

Example

Take $f = e^{x^2z-y^3}$, a Gröbner basis of ann(f) for grevlex $(x,y,z) > \text{grevlex}(\partial_x,\partial_y,\partial_z)$ is

$$\begin{aligned} 2\underline{xz} - \partial_x, & 3\underline{y^2} + \partial_y, & \underline{x^2} - \partial_z \\ 4\underline{z^2}\partial_z + 2z - \partial_x^2, & \underline{x}\partial_x - 2z\partial_z \end{aligned}$$

Critical pairs

What does $[\operatorname{ann}(f) + \partial W_n]$ look like?

It is generated by terms a+d with lt(a)=-lt(d) and $a\in ann(f), d\in \partial W_n$

Example

Take $f = e^{x^2z-y^3}$, a Gröbner basis of ann(f) for grevlex $(x,y,z) > \text{grevlex}(\partial_x,\partial_y,\partial_z)$ is

$$2\underline{xz} - \partial_x, \qquad 3\underline{y^2} + \partial_y, \qquad \underline{x^2} - \partial_z$$
$$4z^2\partial_z + 2z - \partial_x^2, \qquad x\partial_x - 2z\partial_z$$

For example z is irreducible by [.] but

$$z = \underbrace{-\frac{1}{6}(4\underline{z^2}\underline{\partial_z} + 2z - \partial_x^2)}_{\in ann(f)} + \underbrace{\frac{1}{6}(4\underline{\partial_z}z^2 - \partial_x^2)}_{\in \partial W_n}$$

The family of reduction $[.]_n$

 \triangle [ann(f) + ∂W_n] may not be a finite-dimensional vector space

Fix a monomial order \leq on W_n and let η be a monomial of W_n .

$$E_{\leq \eta} := \{ [a+d] \mid a \in \operatorname{ann}(f), d \in \partial W_n, \max(\operatorname{Im}(a), \operatorname{Im}(d)) \leq \eta \}$$
$$= \{ [a] \mid a \in \operatorname{ann}(f), \operatorname{Im}(a) \leq \eta \}$$

Critical pair criterion

Let $a \in \operatorname{ann}(f)$. If there exists $b \in \operatorname{ann}(f)$ and i s.t. $\operatorname{Im}(a) = \operatorname{Im}(\partial_i b)$, then $[a] \in E_{\prec n}$.

The family of reduction $[.]_{\eta}$

Algorithm for computing $E_{\leq \eta}$

```
1 B \leftarrow \emptyset

2 for each monomial \eta' \leq \eta in \operatorname{Im}(\operatorname{ann}(f)) \cap \operatorname{Im}(\partial W_n)

3 if there exists i and b \in \operatorname{ann}(f) s.t. \eta' = \operatorname{Im}(\partial_i b)

4 continue

5 pick a \in \operatorname{ann}(f) s.t. \operatorname{Im}(a) = \eta'

6 B \leftarrow B \cup \{[a]\}

7 return Echelon(B)
```

The family of reduction $[.]_{\eta}$

Algorithm for computing $E_{\leq \eta}$

```
1 B \leftarrow \emptyset

2 for each monomial \eta' \leq \eta in \operatorname{Im}(\operatorname{ann}(f)) \cap \operatorname{Im}(\partial W_n)

3 if there exists i and b \in \operatorname{ann}(f) s.t. \eta' = \operatorname{Im}(\partial_i b)

4 continue

5 pick a \in \operatorname{ann}(f) s.t. \operatorname{Im}(a) = \eta'

6 B \leftarrow B \cup \{[a]\}

7 return Echelon(B)
```

Define: $[a]_{\eta} := [a] \mod E_{\leq \eta}$

Final algorithm

Creative telescoping algorithm

- 1 Choose η smartly (not presented today!)
- $p_0 \leftarrow [1]_{\eta}; \quad \ell \leftarrow 0$
- 3 **while** there is no $\mathbb{K}(t)$ -linear relation $\sum_{i=0}^\ell \lambda_i p_i = 0$
- 4 $p_{\ell+1} \leftarrow [\partial_t(p_\ell)]_\eta$ # invariant: $p_\ell \equiv [\partial_t^\ell(1)]_\eta$ mod ann $(f) + \partial W_n$
- 5 $\ell \leftarrow \ell + 1$
- 6 return $\sum_{i=0}^{\ell} \lambda_i \partial_t^i$
- \bullet Always terminates even though $[.]_{\eta}$ is not a normal form.
- The returned LDE may not be of minimal order.

k-regular graph: every vertex has degree k

Problem statement

 $c_n^{(k)}$: number of k-regular graphs on n vertices.

Goal: compute a LDE for $\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n$ for fixed k

Petersen's graph is 3-regular

k-regular graph: every vertex has degree k

Problem statement

 $c_n^{(k)}$: number of k-regular graphs on n vertices.

Goal: compute a LDE for $\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n$ for fixed k

Petersen's graph is 3-regular

Previous work

- Read (1959): up to k = 3
- McKay, Wormald (≈ 1959): k=4
- Chyzak, Mishna, Salvy (2005): k = 4 using C.T.¹
- Chyzak, Mishna (2025): up to k = 7 using red.-based C.T.¹

¹It is actually a variant of creative telescoping for scalar products of symmetric functions

→ Building on Chyzak-Mishna-Salvy (2005) we obtained

$$\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n = \operatorname{res}_{\mathbf{x}} F(t, \mathbf{x})$$

where F is a series in $\mathbb{K}[[\mathbf{x}]][\mathbf{x}^{-1}]((t))$ implicitly represented by an ideal $I \subset \mathbb{K}(t)[\mathbf{x}]\langle \partial_t, \partial_{\mathbf{x}} \rangle$ satisfying for any $L \in I$, res_x L(F) = 0.

→ Building on Chyzak-Mishna-Salvy (2005) we obtained

$$\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n = \operatorname{res}_{\mathbf{x}} F(t, \mathbf{x})$$

where F is a series in $\mathbb{K}[[\mathbf{x}]][\mathbf{x}^{-1}]((t))$ implicitly represented by an ideal $I \subset \mathbb{K}(t)[\mathbf{x}]\langle \partial_t, \partial_{\mathbf{x}} \rangle$ satisfying for any $L \in I$, res_x L(F) = 0.

Example

For k = 2, I is generated by

$$(t-1)x_1 - t\partial_1, \qquad x_2 - t$$
$$2(t-1)^2\partial_t - \partial_1^2 + 2(t-1)^2\partial_2 + t^2(t-1)$$

and we obtain the LDE

$$2(t-1)d_t+t^2.$$

Benchmarks

Because of the polynomials in the ideal I, no creative telescoping algorithms over $\mathbb{Q}(t,\mathbf{x})$ work here!

k	2	3	4	5	6	7	8
Tak-Macaulay2	0.02s	1.7s	535s	>90m	-	-	-
Tak-Singular	<1s	<1s	25s	>90m	-	-	-
Ch/Mi-Maple ¹	0.04	0.08	0.2	1.96	52.3s	9h	-
Our algo-Julia ¹²	7.2s	7.6s	8.7s	7.9s	8.5s	363s	7h28min

¹Results available at https://files.inria.fr/chyzak/kregs/

 $^{{}^2} Code \ available \ at \ https://github.com/HBrochet/MultivariateCreativeTelescoping.jl$