Multivariate integration in D-modules

<u>Hadrien Brochet,</u> Frédéric Chyzak, Pierre Lairez

Inria Saclay

Domosch∞l 2024

A symbolic integration problem

Let
$$I(t)=\int\limits_{\gamma} rac{dx\,dy\,dz}{1-(1-xy)z-txyz(1-x)(1-y)(1-z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a lin. ord. diff. eq. (LODE) for 1:

$$t^{2}(t^{2} - 34t + 1)\frac{\partial^{3} I}{\partial t^{3}} + 3t(2t^{2} - 51t + 1)\frac{\partial^{2} I}{\partial t^{2}} + (7t^{2} - 112t + 1)\frac{\partial I}{\partial t} + (t - 5)I = 0.$$

A symbolic integration problem

Let
$$I(t)=\int\limits_{\gamma} rac{dx\,dy\,dz}{1-(1-xy)z-txyz(1-x)(1-y)(1-z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a lin. ord. diff. eq. (LODE) for 1:

$$t^2(t^2-34t+1)\frac{\partial^3 I}{\partial t^3}+3t(2t^2-51t+1)\frac{\partial^2 I}{\partial t^2}+(7t^2-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

With this LODE it is possible to

- 1. compute a series expansion,
- 2. evaluate the integral numerically,
- 3. prove identities involving I(t).

Algebra of differential operators

Let D be the algebra $\mathbb{K}(t)[\underline{x}]\langle \partial_t, \underline{\partial_x} \rangle$ where each pair of variables commutes except $\partial_i x_i = x_i \partial_i + 1$, $\overline{\partial_t t} = t \partial_t + 1$

Algebra of differential operators

Let D be the algebra $\mathbb{K}(t)[\underline{x}]\langle \partial_t, \underline{\partial_x} \rangle$ where each pair of variables commutes except $\partial_i x_i = x_i \partial_i + 1$, $\overline{\partial_t t} = t \partial_t + 1$

• It acts on C^{∞} functions: $x_i \cdot f = x_i f$ and $\partial_i \cdot f = \frac{\partial f}{\partial x_i}$ (resp. t, ∂_t).

Algebra of differential operators

Let D be the algebra $\mathbb{K}(t)[\underline{x}]\langle \partial_t, \underline{\partial_x} \rangle$ where each pair of variables commutes except $\partial_i x_i = x_i \partial_i + 1$, $\overline{\partial_t t} = t \partial_t + 1$

- It acts on C^{∞} functions: $x_i \cdot f = x_i f$ and $\partial_i \cdot f = \frac{\partial f}{\partial x_i}$ (resp. t, ∂_t).
- It has a monomial basis as $\mathbb{K}(t)$ -vector space: $(\underline{x}^{\alpha}\underline{\partial}_{\underline{x}}{}^{\beta}\overline{\partial}_{t}^{\gamma})_{\alpha,\beta,\gamma}$.
- It has a notion of degree:

$$\deg\left(\sum_{\alpha,\beta,\gamma}c_{\alpha,\beta,\gamma}\underline{x}^{\alpha}\underline{\partial_{x}}^{\beta}\partial_{t}^{\gamma}\right)=\max\{|\alpha|+|\beta|+\gamma\mid c_{\alpha,\beta,\gamma}\neq 0\}.$$

• Any left (resp. right) ideal I of D has a finite Gröbner basis.

Holonomy

Holonomic function

A function f is holonomic if for each ∂_i and for ∂_t it satisfies a LODE with polynomial coefficients in $\mathbb{K}[t, x_1, \dots, x_n]$.

Annihilator of f

The set $Ann(f) \stackrel{\text{def}}{=} \{L \in D \mid L \cdot f = 0\}$ is a left ideal

Link between functions and operators

f is characterized by its annihilator: $D \cdot f \simeq D / \operatorname{Ann}(f)$.

Integration using Creative telescoping

Assumption: the integral of a derivative is zero

For any $b \in D$ and $i \in \llbracket 1, n
rbracket, \int_{\gamma} \partial_i b \cdot f \underline{dx} = 0$.

Creative telescoping

Find $\ell \in \mathbb{N}$, $a_1, \ldots, a_\ell \in \mathbb{K}(t)$ and $b_1, \ldots, b_n \in D$ such that

$$\left(a_{\ell}(t)\partial_t^{\ell}+\cdots+a_1(t)\partial_t+a_0(t)\right)\cdot f=\sum_{i=1}^n\partial_ib_i\cdot f$$

after integration we get

$$\left(a_{\ell}(t)\partial_{t}^{\ell}+\cdots+a_{1}(t)\partial_{t}+a_{0}\right)\cdot\int_{\gamma}f\underline{dx}=0$$

Algebraic analog of creative telescoping

Creative telescoping

Find $\ell \in \mathbb{N}$, $a_1, \ldots, a_\ell \in \mathbb{K}(t)$ and $b_1, \ldots, b_n \in D$ such that

$$\left(a_{\ell}(t)\partial_t^{\ell}+\cdots+a_1(t)\partial_t+a_0(t)\right)\cdot f=\sum_{i=1}^n\partial_ib_i\cdot f$$

Algebraic analog

Compute the telescoping ideal
$$\mathcal{I}(f) = \left(\mathsf{Ann}(f) + \sum\limits_{i=1}^n \partial_i D\right) \cap \mathbb{K}(t) \langle \partial_t \rangle$$

Algebraic analog of creative telescoping

Creative telescoping

Find $\ell \in \mathbb{N}$, $a_1, \ldots, a_\ell \in \mathbb{K}(t)$ and $b_1, \ldots, b_n \in D$ such that

$$\left(a_{\ell}(t)\partial_t^{\ell}+\cdots+a_1(t)\partial_t+a_0(t)\right)\cdot f=\sum_{i=1}^n\partial_ib_i\cdot f$$

Algebraic analog

Compute the telescoping ideal
$$\mathcal{I}(f) = \left(\mathsf{Ann}(f) + \sum\limits_{i=1}^n \partial_i D\right) \cap \mathbb{K}(t) \langle \partial_t \rangle$$

Theorem

f holonomic $\Longrightarrow \mathcal{I}(f)$ non-zero.

Takayama's algorithm for integration¹

Difficulty: Ann $(f) + \sum_{i=1}^{n} \partial_i D$ is not a left *D*-ideal.

But it is an infinite rank left $\mathbb{K}(t)\langle \partial_t, \partial_x \rangle$ -module.

¹Takayama 1990, (improved in Chyzak-Salvy98 but not presented today)

Takayama's algorithm for integration¹

Difficulty: Ann $(f) + \sum_{i=1}^{n} \partial_i D$ is not a left *D*-ideal.

But it is an infinite rank left $\mathbb{K}(t)\langle \partial_t, \partial_x \rangle$ -module.

Takayama's algorithm

Input: Ann(f)

Output: non-trivial subset of $(\mathsf{Ann}(f) + \sum_{i=1}^n \partial_i D) \cap \mathbb{K}(t) \langle \partial_t \rangle$

- Take generators of $Ann(f) + \sum_{i=1}^{n} \partial_{i}D$ up to a certain degree.
- Eliminate \underline{x} and ∂_x via Gröbner basis computation
- If we find an operator without \underline{x} and $\underline{\partial_x}$ return it otherwise increase the degree bound and start again.

¹Takayama 1990, (improved in Chyzak-Salvy98 but not presented today)

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \, \underline{dx}$ for $a \in D$ and f holonomic

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \, dx$ for $a \in D$ and f holonomic

Subgoal: Construct a $\mathbb{K}(\underline{t})$ -linear map $[.]: D \to D$ s.t.

•
$$a - [a] \in Ann(f) + \sum_{i=1}^{n} \partial_i D$$
 (reduction)

•
$$[a] = 0$$
 iff $a \in Ann(f) + \sum_{i=1}^{n} \partial_i D$ (canonical form)

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \, dx$ for $a \in D$ and f holonomic

Subgoal: Construct a $\mathbb{K}(\underline{t})$ -linear map $[.]:D\to D$ s.t.

•
$$a - [a] \in Ann(f) + \sum_{i=1}^{n} \partial_i D$$
 (reduction)

•
$$[a] = 0$$
 iff $a \in Ann(f) + \sum_{i=1}^{n} \partial_i D$ (canonical form)

Creative telescoping algorithm:¹

- 1 $p_0 \leftarrow [a]$; $\ell \leftarrow 0$
- 2 while there is no $\mathbb{K}(t)$ -linear relation $\sum_{i=0}^{\ell} \lambda_i p_i = 0$
- 3 $p_{\ell+1} \leftarrow [\partial_t p_\ell]; \quad \ell \leftarrow \ell + 1$
- 4 return $\sum_{i=0}^{\ell} \lambda_i \partial_t^i$

¹Bostan, Chen, Chyzak, Li, Xin

A first "naïve" reduction

Algorithm $[.]_{GD}$:

```
1 repeat

2 a \leftarrow RRem(a, \sum_{i=1}^{n} \partial_i D)

3 a \leftarrow LRem(a, Ann(f))

4 until no term in a can be further reduced

5 return a
```

A first "naïve" reduction

Algorithm $[.]_{GD}$:

```
1 repeat

2 a \leftarrow RRem(a, \sum_{i=1}^{n} \partial_i D)

3 a \leftarrow LRem(a, Ann(f))

4 until no term in a can be further reduced

5 return a
```

The Griffiths-Dwork reduction is a special case of the above algorithm.

Theorem (Dwork 62, Griffiths 69)

If $f=e^q$ with $q\in \mathbb{K}(t)[\underline{x}]$ homogeneous and V(q) is smooth then $[.]_{GD}$ is a canonical form.

Precomputation (reminiscent of Takayama's algorithm)

Algorithm $[.]_T^{\sigma}$:

1 **return** LRem($[a]_{GD}$, B_{σ}) over $\mathbb{K}(t)\langle \partial_t \rangle$

Precomputation (reminiscent of Takayama's algorithm)

```
1 B_{\sigma} \leftarrow \emptyset

2 for each gen. g of Ann(f) as \mathbb{K}(t)\langle \partial_t, \underline{\partial_x} \rangle-module s.t. \deg_{\underline{x}}(g) \leq \sigma

3 B_{\sigma} \leftarrow B_{\sigma} \cup \{[g]_{GD}\}

4 B_{\sigma} \leftarrow GB(B_{\sigma}) over \mathbb{K}(t)\langle \partial_t \rangle

5 return B_{\sigma}
```

Algorithm $[.]_{\mathcal{T}}^{\sigma}$:

1 **return** LRem($[a]_{GD}$, B_{σ}) over $\mathbb{K}(t)\langle \partial_t \rangle$

```
I = \{g \in \mathsf{Ann}(f) \mid \mathsf{Im}(g) \in \mathbb{K}[\underline{x}] \langle \partial_t \rangle \}
\mathsf{Precomputation (reminiscent of Takayama's algorithm)}
1 \quad B_{\sigma} \leftarrow \emptyset
2 \quad \mathsf{for each gen.} \quad g \quad \mathsf{of Ann}(f) \text{ as } \mathbb{K}(t) \langle \partial_t, \underline{\partial_x} \rangle \text{-module}
\quad \text{s.t. } \deg_{\underline{x}}(g) \leq \sigma
3 \quad \text{if } \mathsf{Im}(g) \text{ is not reducible by } I
4 \quad B_{\sigma} \leftarrow B_{\sigma} \cup \{[g]_{GD}\}
5 \quad B_{\sigma} \leftarrow \mathsf{GB}(B_{\sigma}) \text{ over } \mathbb{K}(t) \langle \partial_t \rangle
```

```
Algorithm [.]_T^{\sigma}:
```

return B_{σ}

1 **return** LRem($[a]_{GD}$, B_{σ}) over $\mathbb{K}(t)\langle \partial_t \rangle$

$$I = \{ g \in \mathsf{Ann}(f) \mid \mathsf{Im}(g) \in \mathbb{K}[\underline{x}] \langle \partial_t \rangle \}$$

Precomputation (reminiscent of Takayama's algorithm)

```
1 B_{\sigma} \leftarrow \emptyset

2 for each gen. g of \mathsf{Ann}(f) as \mathbb{K}(t)\langle \partial_t, \underline{\partial_x} \rangle-module s.t. \deg_{\underline{x}}(g) \leq \sigma

3 if \mathsf{Im}(g) is not reducible by I

4 B_{\sigma} \leftarrow B_{\sigma} \cup \{[g]_{GD}\}

5 B_{\sigma} \leftarrow \mathsf{GB}(B_{\sigma}) over \mathbb{K}(t)\langle \partial_t \rangle

6 return B_{\sigma}
```

Algorithm $[.]_{\mathcal{T}}^{\sigma}$:

1 **return** LRem($[a]_{GD}$, B_{σ}) over $\mathbb{K}(t)\langle \partial_t \rangle$

Theorem

For any $a \in Ann(f) + \sum_{i=1}^{n} \partial_i D$, $[a]_T^{\sigma} = 0$ for σ large enough.

Conclusion and future works

We have:

- A new algorithm for multivariate integration in Weyl algebras
- An optimized implementation for 1 param. (CRT + evaluation/interpolation)
- Application to other fields (e.g. combinatorics)

Next:

- Test this algorithm with Feynman integrals
- Design an integration algorithm for rational Weyl algebras

Application: counting k-regular graphs

k-regular graph: every vertex has degree k

Problem statement

Let $c_n^{(k)}$ be number of k-regular graphs on n vertices.

We want to compute a LODE for $\sum\limits_{n=0}^{\infty}c_{n}^{(k)}t^{n}$ for k=1,2,3,...

Previous work

- 1959-(Read): up to k = 3
- \approx 1959-(McKay, Wormald): k=4
- 2024-(Chyzak, Mishna): up to k = 7.

Application: counting k-regular graphs

→ Using different tools (scalar product of symmetric functions, Laplace transform ...), we obtain

$$\sum_{n=0}^{\infty} c_n^{(k)} t^n = \operatorname{res}_{p_1, \dots, p_k} F(t, p_1, \dots, p_k)$$

where F is implicitly represented by an ideal $I \subset \mathbb{K}(t)[\underline{p}]\langle \partial_t, \underline{\partial_p} \rangle$ satisfying for any $L \in I$, res_p L(F) = 0.

Application: counting k-regular graphs

→ Using different tools (scalar product of symmetric functions, Laplace transform ...), we obtain

$$\sum_{n=0}^{\infty} c_n^{(k)} t^n = \operatorname{res}_{p_1, \dots, p_k} F(t, p_1, \dots, p_k)$$

where F is implicitly represented by an ideal $I \subset \mathbb{K}(t)[\underline{p}]\langle \partial_t, \underline{\partial_p} \rangle$ satisfying for any $L \in I$, res_p L(F) = 0.

- Most C.T. algorithms do not apply (they need rat coeffs)
- Computation for k = 7 done in 6 min (vs 25 weeks for Chyzak-Mishna)
- It validates the correction and efficiency of our algorithm