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The problem of symbolic integration

dx dy dz
Let /(t) = { 1_(1_xy)z—txyz(y1—x)(1—}’)(1_2).

The objective is to compute a LDE for /:
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The problem of symbolic integration

dx dy dz
Let /(t) = ,{ 1_(1_xy)z—txyz(y1—X)(1—)’)(1_2)'

The objective is to compute a LDE for /:

t2(t% — 34t + 1)33/ +3t(2t% — 51t + 1)& N 112t+1)ﬂ +(t—5)I=0
ot3 ot2 ot o

Two families of algorithms to solve it:

1. rational Creative Telescoping algorithms

2. D-modules algorithms
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The problem of symbolic integration

dx dy dz
Let /(t) = { 1_(1_xy)z—txyz(y1—X)(1—Y)(1_2).

The objective is to compute a LDE for /:
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Two families of algorithms to solve it: (computation time)

1. rational Creative Telescoping algorithms less than 1s

2. D-modules algorithms ~ 7 minutes

2/14



The problem of symbolic integration

dx dy dz
Let /(t) = { 1_(1_xy)z—txyz(y1—X)(1—Y)(1_2)'

The objective is to compute a LDE for /:

3

2.2 2 2
to(t 34t+1 +3t(2t 51t+1 + (7t 112t 41 +(t—=5)/ =0.

Two families of algorithms to solve it: (computation time)

1. rational Creative Telescoping algorithms less than 1s

2. D-modules algorithms ~ 7 minutes

But D-modules algorithms are more expressive.
Goal: reduce the gap
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Definition of the Weyl Algebra

The Weyl algebra W, is the algebra K|xi, ..., Xl (91, ..., d,) with
the commutation rules 9;x; = x;0; + 1.

It acts on C® functions: x; - f = x;f and 9; - f = %.

® |t has a monomial basis as a KK-vector space: (5"‘@‘6)“,5.

It has a notion of degree:

deg(z ca,ﬁg”@ﬁ) = max{|a| + |B| | Cap 7 0}.
ap

finitely generated W,-modules admit Grobner bases.

e f g. W,-modules have a dimension given by its Hilbert serie.
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Holonomy

Holonomic function
A function f is holonomic if it satisfies a LDE with polynomial
coefficients w.r.t. each of its variables.

Annihilator of f

It is the left ideal defined as Ann(f) def {Le W, | L-f=0}.

Holonomic Ideal

A non-trivial left ideal | of W, is holonomic if dim(W, /1) = n.

(Bernstein's inequality : n < dim(W, /1) < 2n).
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Algebraic equivalent of integration

Integration ideal w.r.t x,
The integration ideal of f is II(f) = (Ann(f) 4+ 9,W,) N W,_1.

Explanation:
Let  be a loop and P = A+ 9,B € II(f), then

P-/fdx,,:/P-fdx,,:/ A-f dx,,—i—/a,,B-fdxn:O.
v v v %
=0 as A€Ann(f) — ——

=0 as 1y is a loop
Thus
P € Amn </ fdx,,> .
Y
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Comparison with Creative Telescoping

Let Wt = K(x1,...,xn)(01,...,9n)
Creative telescoping algorithms® work in W't to compute
N2E(f) = (Ann"™(f) + 9, W) N WY
Advantages over D-modules
® CT algorithms are faster in practice
® Grobner basis w.r.t an order on n variables only.
® The ideal 1I™*(f) N W,_1 might be larger that 11(f)

But it is not as general (see next slide).

1Zeilberger 1989, Chyzak 2000, Koutschan 2010,
Bostan-Chyzak-Lairez-Salvy 2018
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Integration over semi-algebraic set! in W,
The Heaviside function H : x — 1 if x > 0 and 0 otherwise is
holonomic in W,, and satisfies
x0y - H =0.

in the sense of Schwartz distributions. But in W/ it is equivalent

to
ox-H=0

which would mean that H is a constant function (contradiction).

LQaku-Shiraki-Takayama 2003, Oaku 2013
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Integration over semi-algebraic set! in W,
The Heaviside function H : x — 1 if x > 0 and 0 otherwise is
holonomic in W,, and satisfies
x0y - H =0.

in the sense of Schwartz distributions. But in W/ it is equivalent
to
ox-H=0

which would mean that H is a constant function (contradiction).

By closure properties, indicator functions of semi-algebraic sets are
holonomic, which permits us to compute integrals like

/ eft(x2+y2)dx dy = / eft(x2+y2)ﬂ{x3_y220}dx dy.
x3—y2>0 R2

1Oaku—Shiraki—Takanyama 2003, Oaku 2013
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Takayama's algorithm for integration®

Main difficulty: Ann(f) + 9, W, is not stable by x.
Solution: write W, = Y% W,—1[9,]x/, and compute GB over
W,_1.

Input Ann(f) = (g1,..., gr) a holonomic ideal
Output GB of a holonomic subideal of (Ann(f)+0,W,) N W,_1
s« 0
repeat
s<s+1
Gs + {xig | deg, (gj) + i < s} (generators of Ann(f) of
degree at most s in xp)
Gs < Gs modulo 9,W,
Gs < Grobner basis of Gs w.r.t. < eliminating x,
Gs < GsN W,_1 (keep only operators without x,)
until W,_; G is holonomic
return G

I Takayama 1998, Chyzak-Salvy 1998
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Variants of the algorithm

(W1 Gs)s is a non-decreasing stationary sequence of ideals.

1. A bound on s is the maximal integer root of the b-function?.
More costly but guarantees to compute the full ideal.

2. Relax the Grobner basis condition on the output and return as
soon as we can garantee to have a holonomic subideal of II.

Less costly but we might find LDE of larger order.

1Oaku-Takayama 1998
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Integration of rational functions coming from the study of
small step walks in the quarter plane!

cT Singular Julia-hol-GB Julia-hol-fast
Both | Ann Int | Ann Int Ann Int minimality

® Maple : Chyzak's algorithm (CT) SSW1 | 123 | >24h ? | 779862 31533 |180.68 311  yes
SSw2 1.03 | >24h ? 54.89 138.95 74 3.88 yes

o Ci — . .
SlngU|ar b funCtlon C”terlon SSW3 | 236 | 71.0 11.0 | 295.03 1091.45 | 26.52 38.07  yes
° . . . . SSW4 | 4.04 | >24h ? > 24h ? 319.06 79.42  yes

Julia (our implementation) :
?
hol-GB et hol-fast SSW5 | 0.96 | >24h 2 53857.47 104571 | 2407 856  yes
SSW6 |5.16 | >24h ? > 24h ? 12084.26 64.07 no
SSW7 | 128 | >24h ? > 24h ? 104.39 2023 yes
. SSws 378 | >24h ? > 24h ? 9321.11 102.15 no
For example SSW2 is:
SSWI10 | 545 | >24h ? > 24h ? 41768.99 558.54 no
2 92 2 2 SSWIl | 121 | >24h ? | 73830.69 59141 | 1589 1029 yes
Xy +x+y- -1

I 2 b} Xdy SSW13 | 351 | >24h ? > 24h ? 5587.42  201.58 no

tx“ys + txc+tyc—xy +t
SSWI15 | 1.03 | 122.0 1.0 | 607.44 23337 | 2551 311 yes
SSWI17 | 327 | >24h ? > 24h ? 136.21 2191  yes
SSW18 | 30.4 | >24h ? > 24h ? 15863.88 849.91 yes

1Bostan-Chyzak-van Hoeij-Kauers-Pech 2017
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Annihilators in W, are hard to compute

Let R=1/(y? — x3) then

Annrat(R) _ W,;at((y2 . X3)ax — 3x2) —+ W’:at((y2 _ X3)ay + 2}/).

81 82

But W,g1 + W,g> is not holonomic !

Observe that g3 € Ann™*(R) \ Wyg1 + Whgo:

def 1
g3 = 2ydx 4 3x%dy = s\ et 3x%g»)
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Computation of Ann(f) using saturation

Saturation ideal
Let / be a left ideal of W,, and p be a polynomial then

ot ={LE W, |3jpLe I}

Proposition

Let G be a Grobner basis of Ann™*(f) with polynomial coefficients
and p be the Icm of the leading coefficients of G. Then

Ann(f) = (W, G)sat.
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Computation of Ann(f) using saturation

Saturation ideal
Let / be a left ideal of W,, and p be a polynomial then

ot ={LE W, |3jpLe I}

Proposition

Let G be a Grobner basis of Ann™*(f) with polynomial coefficients
and p be the Icm of the leading coefficients of G. Then

Ann(f) = (W, G)sat.

Lemma: Computation of /s,

Let T be a new variable with the commutation 9; T = T9; — % T2

Isat - (Wn[T]I + Wn[T](pT— 1)) N Wn.
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Saturation algorithm

Difficulty: if < eliminates T, we don't have Im(ab) = Im(a) Im(b).
Solution: write W,[T] = Y5 W, T'.

Input Ann"(f) = (g1, ..., g:) and p as before
Output GB of a holonomic subideal of Ann(f)
g < pl —1
repeat
s<s+1
Gs + {Tig|i<s}
(generators of W,[T]I + W,[T](pT — 1) with deg+ <'s)
Gs < Grobner basis of G in W, w.r.t. < eliminating T
Gs + Gs N W, (keep only operators without T)
until W, G, is holonomic

return Gs
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Conclusion

® Faster algorithms by earlier termination (speed/minimality
trade-off).

® A new algorithm for computing saturation in W,,.

® Performance are still unsatisfactory.
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