Faster symbolic integration in D-modules

<u>Hadrien Brochet,</u> Frédéric Chyzak, Pierre Lairez

Inria Saclay

JNCF 2023

Let
$$I(t) = \int_{\gamma} \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
.

The objective is to compute a LDE for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3}I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2}I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

Let
$$I(t) = \int_{\gamma} \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
.

The objective is to compute a LDE for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3} I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2} I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

Two families of algorithms to solve it:

- 1. rational Creative Telescoping algorithms
- 2. D-modules algorithms

Let
$$I(t) = \int_{\gamma} \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
.

The objective is to compute a LDE for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3} I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2} I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

Two families of algorithms to solve it: (computation time)

- 1. rational Creative Telescoping algorithms less than 1s
- 2. D-modules algorithms \approx 7 minutes

Let
$$I(t) = \int_{\gamma} \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
.

The objective is to compute a LDE for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3} I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2} I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

Two families of algorithms to solve it: (computation time)

- 1. rational Creative Telescoping algorithms less than 1s
- 2. D-modules algorithms \approx 7 minutes

But D-modules algorithms are more expressive. Goal: reduce the gap

Definition of the Weyl Algebra

The Weyl algebra W_n is the algebra $\mathbb{K}[x_1, \ldots, x_n]\langle \partial_1, \ldots, \partial_n \rangle$ with the commutation rules $\partial_i x_i = x_i \partial_i + 1$.

- It acts on C^{∞} functions: $x_i \cdot f = x_i f$ and $\partial_i \cdot f = \frac{\partial f}{\partial x_i}$.
- It has a monomial basis as a \mathbb{K} -vector space: $(\underline{x}^{\alpha}\underline{\partial}^{\beta})_{\alpha,\beta}$.
- It has a notion of degree:

$$\mathsf{deg}(\sum_{\alpha,\beta} c_{\alpha,\beta} \underline{x}^{\alpha} \underline{\partial}^{\beta}) = \mathsf{max}\{|\alpha| + |\beta| \mid c_{\alpha,\beta} \neq 0\}.$$

- finitely generated *W_n*-modules admit Gröbner bases.
- f. g. W_n -modules have a dimension given by its Hilbert serie.

Holonomy

Holonomic function

A function f is holonomic if it satisfies a LDE with polynomial coefficients w.r.t. each of its variables.

Annihilator of f

It is the left ideal defined as $Ann(f) \stackrel{\text{def}}{=} \{L \in W_n \mid L \cdot f = 0\}.$

Holonomic Ideal

A non-trivial left ideal I of W_n is holonomic if $\dim(W_n/I) = n$. (Bernstein's inequality : $n \leq \dim(W_n/I) \leq 2n$).

Algebraic equivalent of integration

Integration ideal w.r.t x_n

The integration ideal of f is $II(f) = (Ann(f) + \partial_n W_n) \cap W_{n-1}$.

Explanation:

Let γ be a loop and $P = A + \partial_n B \in H(f)$, then

$$P \cdot \int_{\gamma} f dx_n = \int_{\gamma} P \cdot f dx_n = \int_{\gamma} \underbrace{A \cdot f}_{=0 \text{ as } A \in \operatorname{Ann}(f)} dx_n + \underbrace{\int_{\gamma} \partial_n B \cdot f dx_n}_{=0 \text{ as } \gamma \text{ is a loop}} = 0.$$

Thus

$$P \in \operatorname{Ann}\left(\int_{\gamma} f dx_n\right).$$

Comparison with Creative Telescoping

Let
$$W_n^{\text{rat}} = \mathbb{K}(x_1, \ldots, x_n) \langle \partial_1, \ldots, \partial_n \rangle$$

Creative telescoping algorithms¹ work in W_n^{rat} to compute

$$\mathsf{II}^{rat}(f) = (\mathsf{Ann}^{\mathsf{rat}}(f) + \partial_n W_n^{\mathsf{rat}}) \cap W_{n-1}^{\mathsf{rat}}.$$

Advantages over D-modules

- CT algorithms are faster in practice
- Gröbner basis w.r.t an order on *n* variables only.
- The ideal $II^{rat}(f) \cap W_{n-1}$ might be larger that II(f)

But it is not as general (see next slide).

¹Zeilberger 1989, Chyzak 2000, Koutschan 2010, Bostan-Chyzak-Lairez-Salvy 2018

Integration over semi-algebraic set¹ in W_n

The Heaviside function $H: x \mapsto 1$ if x > 0 and 0 otherwise is holonomic in W_n and satisfies

$$x\partial_x \cdot H = 0.$$

in the sense of Schwartz distributions. But in W_n^{rat} it is equivalent to

$$\partial_x \cdot H = 0$$

which would mean that H is a constant function (contradiction).

¹Oaku-Shiraki-Takayama 2003, Oaku 2013

Integration over semi-algebraic set¹ in W_n

The Heaviside function $H: x \mapsto 1$ if x > 0 and 0 otherwise is holonomic in W_n and satisfies

 $x\partial_x \cdot H = 0.$

in the sense of Schwartz distributions. But in W_n^{rat} it is equivalent to

$$\partial_x \cdot H = 0$$

which would mean that H is a constant function (contradiction).

By closure properties, indicator functions of semi-algebraic sets are holonomic, which permits us to compute integrals like

$$\int_{x^3-y^2 \ge 0} e^{-t(x^2+y^2)} dx \, dy = \int_{\mathbb{R}^2} e^{-t(x^2+y^2)} \mathbb{1}_{\{x^3-y^2 \ge 0\}} dx \, dy.$$

¹Oaku-Shiraki-Takayama 2003, Oaku 2013

Takayama's algorithm for integration¹

Main difficulty: Ann $(f) + \partial_n W_n$ is not stable by x_n . Solution: write $W_n = \sum_{i=0}^{+\infty} W_{n-1}[\partial_n] x_n^i$ and compute GB over W_{n-1} .

Input Ann $(f) = (g_1, \ldots, g_r)$ a holonomic ideal **Output** GB of a holonomic subideal of $(Ann(f) + \partial_n W_n) \cap W_{n-1}$ $s \leftarrow 0$

repeat

 $s \leftarrow s + 1$ $G_s \leftarrow \{x_n^i g_j \mid \deg_{x_n}(g_j) + i \leq s\} \text{ (generators of Ann}(f) \text{ of } degree at most s in x_n)$ $G_s \leftarrow G_s \text{ modulo } \partial_n W_n$ $G_s \leftarrow \text{Gröbner basis of } G_s \text{ w.r.t. } \preccurlyeq \text{ eliminating } x_n$ $\tilde{G}_s \leftarrow G_s \cap W_{n-1} \text{ (keep only operators without } x_n)$ until $W_{n-1}\tilde{G}_s$ is holonomic return \tilde{G}_s

¹Takayama 1998, Chyzak-Salvy 1998

Variants of the algorithm

 $(W_{n-1}\tilde{G}_s)_s$ is a non-decreasing stationary sequence of ideals.

- A bound on s is the maximal integer root of the b-function¹. More costly but guarantees to compute the full ideal.
- Relax the Gröbner basis condition on the output and return as soon as we can garantee to have a holonomic subideal of II. Less costly but we might find LDE of larger order.

¹Oaku-Takayama 1998

Integration of rational functions coming from the study of small step walks in the quarter plane¹

- Maple : Chyzak's algorithm (CT)
- Singular: *b*-function criterion
- Julia (our implementation) : hol-GB et hol-fast

For example SSW2 is:

$$\int \frac{-x^2y^2 + x^2 + y^2 - 1}{tx^2y^2 + tx^2 + ty^2 - xy + t} dxdy$$

	ст	Singular		Julia-hol-GB		Julia-hol-fast		
	Both	Ann	Int	Ann	Int	Ann	Int	minimality
SSW1	1.23	> 24h	?	7798.62	315.33	180.68	3.11	yes
SSW2	1.03	> 24h	?	54.89	138.95	7.4	3.88	yes
SSW3	2.36	71.0	11.0	295.03	1091.45	26.52	38.07	yes
SSW4	4.04	> 24 <i>h</i>	?	> 24h	?	319.06	79.42	yes
SSW5	0.96	> 24h	?	53857.47	1945.71	24.07	8.56	yes
SSW6	5.16	> 24h	?	> 24h	?	12084.26	64.07	no
SSW7	1.28	> 24h	?	> 24h	?	104.39	20.23	yes
SSW8	3.78	> 24h	?	> 24h	?	9321.11	102.15	no
SSW10	5.45	> 24h	?	> 24h	?	41768.99	558.54	no
SSW11	1.21	> 24h	?	73839.69	591.41	158.9	10.29	yes
SSW13	3.51	> 24h	?	> 24h	?	5587.42	201.58	no
SSW15	1.03	122.0	1.0	607.44	233.37	25.51	3.11	yes
SSW17	3.27	> 24 <i>h</i>	?	> 24h	?	136.21	21.91	yes
SSW18	30.4	> 24h	?	> 24h	?	15863.88	849.91	yes

¹Bostan-Chyzak-van Hoeij-Kauers-Pech 2017

Annihilators in W_n are hard to compute

Let
$$R = 1/(y^2 - x^3)$$
 then

$$\operatorname{Ann}^{\operatorname{rat}}(R) = W_n^{\operatorname{rat}}(\underbrace{(y^2 - x^3)\partial_x - 3x^2}_{g_1}) + W_n^{\operatorname{rat}}(\underbrace{(y^2 - x^3)\partial_y + 2y}_{g_2}).$$

But $W_ng_1 + W_ng_2$ is not holonomic !

Observe that $g_3 \in Ann^{rat}(R) \setminus W_n g_1 + W_n g_2$:

$$g_3 \stackrel{\text{def}}{=} 2ydx + 3x^2dy = \frac{1}{y^2 - x^3}(2yg_1 + 3x^2g_2)$$

Computation of Ann(f) using saturation

Saturation ideal

Let I be a left ideal of W_n and p be a polynomial then

$$I_{\mathsf{sat}} = \{ L \in W_n \mid \exists j \ p^j L \in I \}.$$

Proposition

Let G be a Gröbner basis of $Ann^{rat}(f)$ with polynomial coefficients and p be the lcm of the leading coefficients of G. Then

$$\mathsf{Ann}(f) = (W_n G)_{\mathsf{sat}}.$$

Computation of Ann(f) using saturation

Saturation ideal

Let I be a left ideal of W_n and p be a polynomial then

$$I_{\mathsf{sat}} = \{ L \in W_n \mid \exists j \ p^j L \in I \}.$$

Proposition

Let G be a Gröbner basis of $Ann^{rat}(f)$ with polynomial coefficients and p be the lcm of the leading coefficients of G. Then

$$\mathsf{Ann}(f) = (W_n G)_{\mathsf{sat}}.$$

Lemma: Computation of Isat

Let T be a new variable with the commutation $\partial_i T = T \partial_i - \frac{\partial p}{\partial x_i} T^2$

$$I_{\mathsf{sat}} = (W_n[T]I + W_n[T](pT-1)) \cap W_n.$$

Saturation algorithm

Difficulty: if \preccurlyeq eliminates T, we don't have $\operatorname{Im}(ab) = \operatorname{Im}(a) \operatorname{Im}(b)$. Solution: write $W_n[T] = \sum_{i=0}^{+\infty} W_n T^i$.

Input Ann^{rat} $(f) = (g_1, \ldots, g_r)$ and p as before **Output** GB of a holonomic subideal of Ann(f) $g_0 \leftarrow pT - 1$ repeat $s \leftarrow s + 1$ $G_{s} \leftarrow \{T^{i}g_{i} \mid i < s\}$ (generators of $W_n[T]I + W_n[T](pT-1)$ with deg $\tau < s$) $G_{s} \leftarrow \text{Gröbner basis of } G_{s} \text{ in } W_{n} \text{ w.r.t. } \preccurlyeq \text{eliminating } T$ $\tilde{G}_{s} \leftarrow G_{s} \cap W_{n}$ (keep only operators without T) **until** $W_n \tilde{G}_s$ is holonomic return G.

Conclusion

- Faster algorithms by earlier termination (speed/minimality trade-off).
- A new algorithm for computing saturation in W_n .
- Performance are still unsatisfactory.