Faster symbolic integration in D-modules

Hadrien Brochet,
Frédéric Chyzak, Pierre Lairez
Inria Saclay
JNCF 2023

The problem of symbolic integration

$$
\text { Let } I(t)=\int_{\gamma} \frac{d x d y d z}{1-(1-x y) z-t x y z(1-x)(1-y)(1-z)} \text {. }
$$

The objective is to compute a LDE for I:
$t^{2}\left(t^{2}-34 t+1\right) \frac{\partial^{3} I}{\partial t^{3}}+3 t\left(2 t^{2}-51 t+1\right) \frac{\partial^{2} I}{\partial t^{2}}+\left(7 t^{2}-112 t+1\right) \frac{\partial I}{\partial t}+(t-5) I=0$.

The problem of symbolic integration

Let $I(t)=\int_{\gamma} \frac{d x d y d z}{1-(1-x y) z-t x y z(1-x)(1-y)(1-z)}$.
The objective is to compute a LDE for I:
$t^{2}\left(t^{2}-34 t+1\right) \frac{\partial^{3} I}{\partial t^{3}}+3 t\left(2 t^{2}-51 t+1\right) \frac{\partial^{2} I}{\partial t^{2}}+\left(7 t^{2}-112 t+1\right) \frac{\partial I}{\partial t}+(t-5) I=0$.
Two families of algorithms to solve it:

1. rational Creative Telescoping algorithms
2. D-modules algorithms

The problem of symbolic integration

Let $I(t)=\int_{\gamma} \frac{d x d y d z}{1-(1-x y) z-t x y z(1-x)(1-y)(1-z)}$.
The objective is to compute a LDE for I :
$t^{2}\left(t^{2}-34 t+1\right) \frac{\partial^{3} I}{\partial t^{3}}+3 t\left(2 t^{2}-51 t+1\right) \frac{\partial^{2} I}{\partial t^{2}}+\left(7 t^{2}-112 t+1\right) \frac{\partial I}{\partial t}+(t-5) I=0$.
Two families of algorithms to solve it: (computation time)

1. rational Creative Telescoping algorithms less than $1 s$
2. D-modules algorithms ≈ 7 minutes

The problem of symbolic integration

Let $I(t)=\int_{\gamma} \frac{d x d y d z}{1-(1-x y) z-t x y z(1-x)(1-y)(1-z)}$.
The objective is to compute a LDE for I:
$t^{2}\left(t^{2}-34 t+1\right) \frac{\partial^{3} I}{\partial t^{3}}+3 t\left(2 t^{2}-51 t+1\right) \frac{\partial^{2} I}{\partial t^{2}}+\left(7 t^{2}-112 t+1\right) \frac{\partial I}{\partial t}+(t-5) I=0$.
Two families of algorithms to solve it: (computation time)

1. rational Creative Telescoping algorithms less than $1 s$
2. D-modules algorithms ≈ 7 minutes

But D-modules algorithms are more expressive.
Goal: reduce the gap

Definition of the Weyl Algebra

The Weyl algebra W_{n} is the algebra $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ with the commutation rules $\partial_{i} x_{i}=x_{i} \partial_{i}+1$.

- It acts on C^{∞} functions: $x_{i} \cdot f=x_{i} f$ and $\partial_{i} \cdot f=\frac{\partial f}{\partial x_{i}}$.
- It has a monomial basis as a \mathbb{K}-vector space: $\left(\underline{x}^{\alpha} \underline{\partial}^{\beta}\right)_{\alpha, \beta}$.
- It has a notion of degree:

$$
\operatorname{deg}\left(\sum_{\alpha, \beta} c_{\alpha, \beta} \underline{\beta}^{\alpha} \underline{\partial}^{\beta}\right)=\max \left\{|\alpha|+|\beta| \mid c_{\alpha, \beta} \neq 0\right\} .
$$

- finitely generated W_{n}-modules admit Gröbner bases.
- f. g. W_{n}-modules have a dimension given by its Hilbert serie.

Holonomy

Holonomic function

A function f is holonomic if it satisfies a LDE with polynomial coefficients w.r.t. each of its variables.

Annihilator of f
It is the left ideal defined as $\operatorname{Ann}(f) \stackrel{\text { def }}{=}\left\{L \in W_{n} \mid L \cdot f=0\right\}$.
Holonomic Ideal
A non-trivial left ideal I of W_{n} is holonomic if $\operatorname{dim}\left(W_{n} / I\right)=n$.
(Bernstein's inequality : $n \leq \operatorname{dim}\left(W_{n} / I\right) \leq 2 n$).

Algebraic equivalent of integration

Integration ideal w.r.t x_{n}
The integration ideal of f is $I I(f)=\left(\operatorname{Ann}(f)+\partial_{n} W_{n}\right) \cap W_{n-1}$.

Explanation:
Let γ be a loop and $P=A+\partial_{n} B \in \mathrm{II}(f)$, then
$P \cdot \int_{\gamma} f d x_{n}=\int_{\gamma} P \cdot f d x_{n}=\int_{\gamma} \underbrace{A \cdot f}_{=0 \text { as } A \in \operatorname{Ann}(f)} d x_{n}+\underbrace{\int_{\gamma} \partial_{n} B \cdot f d x_{n}}_{=0 \text { as } \gamma \text { is a loop }}=0$.
Thus

$$
P \in \operatorname{Ann}\left(\int_{\gamma} f d x_{n}\right) .
$$

Comparison with Creative Telescoping

Let $W_{n}^{\text {rat }}=\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$
Creative telescoping algorithms ${ }^{1}$ work in $W_{n}^{\text {rat }}$ to compute

$$
\|^{\text {rat }}(f)=\left(\operatorname{Ann}^{\text {rat }}(f)+\partial_{n} W_{n}^{\text {rat }}\right) \cap W_{n-1}^{\text {rat }} .
$$

Advantages over D-modules

- CT algorithms are faster in practice
- Gröbner basis w.r.t an order on n variables only.
- The ideal IIrat $(f) \cap W_{n-1}$ might be larger that II (f)

But it is not as general (see next slide).

[^0]
Integration over semi-algebraic set ${ }^{1}$ in W_{n}

The Heaviside function $H: x \mapsto 1$ if $x>0$ and 0 otherwise is holonomic in W_{n} and satisfies

$$
x \partial_{x} \cdot H=0 .
$$

in the sense of Schwartz distributions. But in $W_{n}^{r a t}$ it is equivalent to

$$
\partial_{x} \cdot H=0
$$

which would mean that H is a constant function (contradiction).

Integration over semi-algebraic set ${ }^{1}$ in W_{n}

The Heaviside function $H: x \mapsto 1$ if $x>0$ and 0 otherwise is holonomic in W_{n} and satisfies

$$
x \partial_{x} \cdot H=0
$$

in the sense of Schwartz distributions. But in $W_{n}^{r a t}$ it is equivalent to

$$
\partial_{x} \cdot H=0
$$

which would mean that H is a constant function (contradiction).
By closure properties, indicator functions of semi-algebraic sets are holonomic, which permits us to compute integrals like

$$
\int_{x^{3}-y^{2} \geq 0} e^{-t\left(x^{2}+y^{2}\right)} d x d y=\int_{\mathbb{R}^{2}} e^{-t\left(x^{2}+y^{2}\right)} \mathbb{1}_{\left\{x^{3}-y^{2} \geq 0\right\}} d x d y
$$

Takayama's algorithm for integration ${ }^{1}$

Main difficulty: $\operatorname{Ann}(f)+\partial_{n} W_{n}$ is not stable by x_{n}.
Solution: write $W_{n}=\sum_{i=0}^{+\infty} W_{n-1}\left[\partial_{n}\right] x_{n}^{i}$ and compute GB over W_{n-1}.

Input $\operatorname{Ann}(f)=\left(g_{1}, \ldots, g_{r}\right)$ a holonomic ideal
Output GB of a holonomic subideal of $\left(\operatorname{Ann}(f)+\partial_{n} W_{n}\right) \cap W_{n-1}$
$s \leftarrow 0$
repeat
$s \leftarrow s+1$
$G_{s} \leftarrow\left\{x_{n}^{i} g_{j} \mid \operatorname{deg}_{x_{n}}\left(g_{j}\right)+i \leq s\right\}$ (generators of Ann (f) of
degree at most s in x_{n})
$G_{s} \leftarrow G_{s}$ modulo $\partial_{n} W_{n}$
$G_{s} \leftarrow$ Gröbner basis of G_{s} w.r.t. \preccurlyeq eliminating x_{n}
$\tilde{G}_{s} \leftarrow G_{s} \cap W_{n-1}$ (keep only operators without x_{n})
until $W_{n-1} \tilde{G}_{s}$ is holonomic return \tilde{G}_{s}

[^1]
Variants of the algorithm

$\left(W_{n-1} \tilde{G}_{s}\right)_{s}$ is a non-decreasing stationary sequence of ideals.

1. A bound on s is the maximal integer root of the b-function ${ }^{1}$. More costly but guarantees to compute the full ideal.
2. Relax the Gröbner basis condition on the output and return as soon as we can garantee to have a holonomic subideal of II. Less costly but we might find LDE of larger order.

Integration of rational functions coming from the study of small step walks in the quarter plane ${ }^{1}$

- Maple : Chyzak's algorithm (CT)
- Singular: b-function criterion
- Julia (our implementation) : hol-GB et hol-fast

For example SSW2 is:

$$
\int \frac{-x^{2} y^{2}+x^{2}+y^{2}-1}{t x^{2} y^{2}+t x^{2}+t y^{2}-x y+t} d x d y
$$

	CT	Singular		Julia-hol-GB		Julia-hol-fast		
	Both	Ann	Int	Ann	Int	Ann	Int	minimality
SSW1	1.23	$>24 h$?	7798.62	315.33	180.68	3.11	yes
SSW2	1.03	$>24 h$?	54.89	138.95	7.4	3.88	yes
SSW3	2.36	71.0	11.0	295.03	1091.45	26.52	38.07	yes
SSW4	4.04	$>24 h$?	$>24 h$?	319.06	79.42	yes
SSW5	0.96	$>24 h$?	53857.47	1945.71	24.07	8.56	yes
SSW6	5.16	$>24 h$?	$>24 h$?	12084.26	64.07	no
SSW7	1.28	$>24 h$?	$>24 h$	$?$	104.39	20.23	yes
SSW8	3.78	$>24 h$?	$>24 h$?	9321.11	102.15	no
SSW10	5.45	$>24 h$?	$>24 h$?	41768.99	558.54	no
SSW11	1.21	$>24 h$?	73839.69	591.41	158.9	10.29	yes
SSW13	3.51	$>24 h$?	$>24 h$?	5587.42	201.58	no
SSW15	1.03	122.0	1.0	607.44	233.37	25.51	3.11	yes
SSW17	3.27	$>24 h$?	$>24 h$?	136.21	21.91	yes
SSW18	30.4	$>24 h$?	$>24 h$?	15863.88	849.91	yes

Annihilators in W_{n} are hard to compute

Let $R=1 /\left(y^{2}-x^{3}\right)$ then

$$
\text { Ann }{ }^{\text {rat }}(R)=W_{n}^{\text {rat }}(\underbrace{\left(y^{2}-x^{3}\right) \partial_{x}-3 x^{2}}_{g_{1}})+W_{n}^{\text {rat }}(\underbrace{\left(y^{2}-x^{3}\right) \partial_{y}+2 y}_{g_{2}})
$$

But $W_{n} g_{1}+W_{n} g_{2}$ is not holonomic!

Observe that $g_{3} \in A n n^{\text {rat }}(R) \backslash W_{n} g_{1}+W_{n} g_{2}$:

$$
g_{3} \stackrel{\text { def }}{=} 2 y d x+3 x^{2} d y=\frac{1}{y^{2}-x^{3}}\left(2 y g_{1}+3 x^{2} g_{2}\right)
$$

Computation of $\operatorname{Ann}(f)$ using saturation

Saturation ideal
Let I be a left ideal of W_{n} and p be a polynomial then

$$
I_{\text {sat }}=\left\{L \in W_{n} \mid \exists j p^{j} L \in I\right\} .
$$

Proposition

Let G be a Gröbner basis of $A n n^{\text {rat }}(f)$ with polynomial coefficients and p be the Icm of the leading coefficients of G. Then

$$
\operatorname{Ann}(f)=\left(W_{n} G\right)_{\text {sat }}
$$

Computation of $\operatorname{Ann}(f)$ using saturation

Saturation ideal
Let I be a left ideal of W_{n} and p be a polynomial then

$$
I_{\text {sat }}=\left\{L \in W_{n} \mid \exists j p^{j} L \in I\right\} .
$$

Proposition

Let G be a Gröbner basis of $A n n^{\text {rat }}(f)$ with polynomial coefficients and p be the Icm of the leading coefficients of G. Then

$$
\operatorname{Ann}(f)=\left(W_{n} G\right)_{\text {sat }}
$$

Lemma: Computation of $I_{\text {sat }}$
Let T be a new variable with the commutation $\partial_{i} T=T \partial_{i}-\frac{\partial p}{\partial x_{i}} T^{2}$

$$
I_{\text {sat }}=\left(W_{n}[T] I+W_{n}[T](p T-1)\right) \cap W_{n}
$$

Saturation algorithm

Difficulty: if \preccurlyeq eliminates T, we don't have $\operatorname{Im}(a b)=\operatorname{Im}(a) \operatorname{Im}(b)$. Solution: write $W_{n}[T]=\sum_{i=0}^{+\infty} W_{n} T^{i}$.

Input $\mathrm{Ann}^{\text {rat }}(f)=\left(g_{1}, \ldots, g_{r}\right)$ and p as before Output GB of a holonomic subideal of $\operatorname{Ann}(f)$
$g_{0} \leftarrow p T-1$
repeat
$s \leftarrow s+1$
$G_{s} \leftarrow\left\{T^{i} g_{j} \mid i \leq s\right\}$
(generators of $W_{n}[T] I+W_{n}[T](p T-1)$ with $\operatorname{deg}_{T} \leq s$)
$G_{s} \leftarrow$ Gröbner basis of G_{s} in W_{n} w.r.t. \preccurlyeq eliminating T
$\tilde{G}_{s} \leftarrow G_{s} \cap W_{n}$ (keep only operators without T)
until $W_{n} \tilde{G}_{s}$ is holonomic
return \tilde{G}_{s}

Conclusion

- Faster algorithms by earlier termination (speed/minimality trade-off).
- A new algorithm for computing saturation in W_{n}.
- Performance are still unsatisfactory.

[^0]: ${ }^{1}$ Zeilberger 1989, Chyzak 2000, Koutschan 2010, Bostan-Chyzak-Lairez-Salvy 2018

[^1]: ${ }^{1}$ Takayama 1998, Chyzak-Salvy 1998

