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The problem of symbolic integration

Let I (t) =
∫
γ

dx dy dz
1−(1−xy )z−txyz(1−x)(1−y )(1−z) .

The objective is to compute a LDE for I :

t2(t2−34t+1)
∂3I

∂t3
+3t(2t2−51t+1)

∂2I

∂t2
+(7t2−112t+1)

∂I

∂t
+(t−5)I = 0.

Two families of algorithms to solve it:

1. rational Creative Telescoping algorithms

2. D-modules algorithms

But D-modules algorithms are more expressive.
Goal: reduce the gap
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Definition of the Weyl Algebra

The Weyl algebra Wn is the algebra K[x1, . . . , xn]⟨∂1, . . . , ∂n⟩ with
the commutation rules ∂ixi = xi∂i + 1.

• It acts on C∞ functions: xi · f = xi f and ∂i · f = ∂f
∂xi

.

• It has a monomial basis as a K-vector space: (xα∂β)α,β.

• It has a notion of degree:

deg(∑
α,β

cα,βx
α∂β) = max{|α|+ |β| | cα,β ̸= 0}.

• finitely generated Wn-modules admit Gröbner bases.

• f. g. Wn-modules have a dimension given by its Hilbert serie.
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Holonomy

Holonomic function

A function f is holonomic if it satisfies a LDE with polynomial
coefficients w.r.t. each of its variables.

Annihilator of f

It is the left ideal defined as Ann(f )
def
= {L ∈ Wn | L · f = 0}.

Holonomic Ideal

A non-trivial left ideal I of Wn is holonomic if dim(Wn/I ) = n.
(Bernstein’s inequality : n ≤ dim(Wn/I ) ≤ 2n).
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Algebraic equivalent of integration

Integration ideal w.r.t xn

The integration ideal of f is II(f ) = (Ann(f ) + ∂nWn) ∩Wn−1.

Explanation:
Let γ be a loop and P = A+ ∂nB ∈ II(f ), then

P ·
∫

γ
fdxn =

∫
γ
P · fdxn =

∫
γ

A · f︸︷︷︸
=0 as A∈Ann(f )

dxn+
∫

γ
∂nB · fdxn︸ ︷︷ ︸

=0 as γ is a loop

= 0.

Thus

P ∈ Ann

(∫
γ
fdxn

)
.
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Comparison with Creative Telescoping

Let W rat
n = K(x1, . . . , xn)⟨∂1, . . . , ∂n⟩

Creative telescoping algorithms1 work in W rat
n to compute

IIrat(f ) = (Annrat(f ) + ∂nW
rat
n ) ∩W rat

n−1.

Advantages over D-modules

• CT algorithms are faster in practice

• Gröbner basis w.r.t an order on n variables only.

• The ideal IIrat(f ) ∩Wn−1 might be larger that II(f )

But it is not as general (see next slide).

1Zeilberger 1989, Chyzak 2000, Koutschan 2010,
Bostan-Chyzak-Lairez-Salvy 2018
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Integration over semi-algebraic set1 in Wn

The Heaviside function H : x 7→ 1 if x > 0 and 0 otherwise is
holonomic in Wn and satisfies

x∂x ·H = 0.

in the sense of Schwartz distributions. But in W rat
n it is equivalent

to
∂x ·H = 0

which would mean that H is a constant function (contradiction).

By closure properties, indicator functions of semi-algebraic sets are
holonomic, which permits us to compute integrals like∫

x3−y2≥0

e−t(x
2+y2)dx dy =

∫
R2

e−t(x
2+y2)1{x3−y2≥0}dx dy .

1Oaku-Shiraki-Takayama 2003, Oaku 2013
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Takayama’s algorithm for integration1

Main difficulty: Ann(f ) + ∂nWn is not stable by xn.
Solution: write Wn = ∑+∞

i=0Wn−1[∂n]x in and compute GB over
Wn−1.

Input Ann(f ) = (g1, . . . , gr ) a holonomic ideal
Output GB of a holonomic subideal of (Ann(f ) + ∂nWn) ∩Wn−1

s ← 0
repeat
s ← s + 1
Gs ← {x ingj | degxn(gj ) + i ≤ s} (generators of Ann(f ) of
degree at most s in xn)
Gs ← Gs modulo ∂nWn

Gs ← Gröbner basis of Gs w.r.t. ≼ eliminating xn
G̃s ← Gs ∩Wn−1 (keep only operators without xn)

until Wn−1G̃s is holonomic
return G̃s

1Takayama 1998, Chyzak-Salvy 1998
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Variants of the algorithm

(Wn−1G̃s)s is a non-decreasing stationary sequence of ideals.

1. A bound on s is the maximal integer root of the b-function1.

More costly but guarantees to compute the full ideal.

2. Relax the Gröbner basis condition on the output and return as
soon as we can garantee to have a holonomic subideal of II.

Less costly but we might find LDE of larger order.

1Oaku-Takayama 1998
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Integration of rational functions coming from the study of
small step walks in the quarter plane1

• Maple : Chyzak’s algorithm (CT)

• Singular: b-function criterion

• Julia (our implementation) :
hol-GB et hol-fast

For example SSW2 is:

∫ −x2y2 + x2 + y2 − 1

tx2y2 + tx2 + ty2 − xy + t
dxdy

CT Singular Julia-hol-GB Julia-hol-fast

Both Ann Int Ann Int Ann Int minimality

SSW1 1.23 > 24h ? 7798.62 315.33 180.68 3.11 yes

SSW2 1.03 > 24h ? 54.89 138.95 7.4 3.88 yes

SSW3 2.36 71.0 11.0 295.03 1091.45 26.52 38.07 yes

SSW4 4.04 > 24h ? > 24h ? 319.06 79.42 yes

SSW5 0.96 > 24h ? 53857.47 1945.71 24.07 8.56 yes

SSW6 5.16 > 24h ? > 24h ? 12084.26 64.07 no

SSW7 1.28 > 24h ? > 24h ? 104.39 20.23 yes

SSW8 3.78 > 24h ? > 24h ? 9321.11 102.15 no

SSW10 5.45 > 24h ? > 24h ? 41768.99 558.54 no

SSW11 1.21 > 24h ? 73839.69 591.41 158.9 10.29 yes

SSW13 3.51 > 24h ? > 24h ? 5587.42 201.58 no

SSW15 1.03 122.0 1.0 607.44 233.37 25.51 3.11 yes

SSW17 3.27 > 24h ? > 24h ? 136.21 21.91 yes

SSW18 30.4 > 24h ? > 24h ? 15863.88 849.91 yes

1Bostan-Chyzak-van Hoeij-Kauers-Pech 2017
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Annihilators in Wn are hard to compute

Let R = 1/(y2 − x3) then

Annrat(R) = W rat
n ((y2 − x3)∂x − 3x2︸ ︷︷ ︸

g1

) +W rat
n ((y2 − x3)∂y + 2y︸ ︷︷ ︸

g2

).

But Wng1 +Wng2 is not holonomic !

Observe that g3 ∈ Annrat(R) \Wng1 +Wng2:

g3
def
= 2ydx + 3x2dy =

1

y2 − x3
(2yg1 + 3x2g2)
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Computation of Ann(f ) using saturation

Saturation ideal

Let I be a left ideal of Wn and p be a polynomial then

Isat = {L ∈ Wn | ∃j pjL ∈ I}.

Proposition

Let G be a Gröbner basis of Annrat(f ) with polynomial coefficients
and p be the lcm of the leading coefficients of G . Then

Ann(f ) = (WnG )sat.

Lemma: Computation of Isat

Let T be a new variable with the commutation ∂iT = T ∂i − ∂p
∂xi

T 2

Isat = (Wn[T ]I +Wn[T ](pT − 1)) ∩Wn.
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Saturation algorithm

Difficulty: if ≼ eliminates T , we don’t have lm(ab) = lm(a) lm(b).
Solution: write Wn[T ] = ∑+∞

i=0WnT
i .

Input Annrat(f ) = (g1, . . . , gr ) and p as before
Output GB of a holonomic subideal of Ann(f )

g0 ← pT − 1
repeat

s ← s + 1
Gs ← {T igj | i ≤ s}
(generators of Wn[T ]I +Wn[T ](pT − 1) with degT ≤ s)
Gs ← Gröbner basis of Gs in Wn w.r.t. ≼ eliminating T
G̃s ← Gs ∩Wn (keep only operators without T )

until WnG̃s is holonomic
return G̃s
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Conclusion

• Faster algorithms by earlier termination (speed/minimality
trade-off).

• A new algorithm for computing saturation in Wn.

• Performance are still unsatisfactory.
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