A Reduction-Based Creative Telescoping Algorithm for Multiple Integrals

> Hadrien Brochet, Frédéric Chyzak, Pierre Lairez

> > Inria Saclay

JNCF 2024

A symbolic integration problem

Let
$$I(t) = \int\limits_{\gamma} rac{dx\,dy\,dz}{1-(1-xy)z-txyz(1-x)(1-y)(1-z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a lin. ord. diff. eq. (LODE) for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3}I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2}I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

A symbolic integration problem

Let
$$I(t) = \int\limits_{\gamma} rac{dx\,dy\,dz}{1-(1-xy)z-txyz(1-x)(1-y)(1-z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a lin. ord. diff. eq. (LODE) for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3} I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2} I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

With this LODE it is possible to

- 1. compute a series expansion,
- 2. evaluate the integral numerically,
- 3. prove identities involving I(t).

Algebra of differential operators

Let *D* be the algebra $\mathbb{K}(t)[\underline{x}]\langle \partial_t, \underline{\partial_x} \rangle$ where each pair of variables commutes except $\partial_i x_i = x_i \partial_i + 1$, $\overline{\partial_t} t = t \partial_t + 1$

Algebra of differential operators

Let *D* be the algebra $\mathbb{K}(t)[\underline{x}]\langle \partial_t, \underline{\partial_x} \rangle$ where each pair of variables commutes except $\partial_i x_i = x_i \partial_i + 1$, $\overline{\partial_t} t = t \partial_t + 1$

• It acts on C^{∞} functions: $x_i \cdot f = x_i f$ and $\partial_i \cdot f = \frac{\partial f}{\partial x_i}$ (resp. t, ∂_t).

Algebra of differential operators

Let *D* be the algebra $\mathbb{K}(t)[\underline{x}]\langle \partial_t, \underline{\partial_x} \rangle$ where each pair of variables commutes except $\partial_i x_i = x_i \partial_i + 1$, $\overline{\partial_t} t = t \partial_t + 1$

- It acts on C^{∞} functions: $x_i \cdot f = x_i f$ and $\partial_i \cdot f = \frac{\partial f}{\partial x_i}$ (resp. t, ∂_t).
- It has a monomial basis as $\mathbb{K}(t)$ -vector space: $(\underline{x}^{\alpha}\underline{\partial_{x}}^{\beta}\overline{\partial_{t}}^{\gamma})_{\alpha,\beta,\gamma}$.
- It has a notion of degree:

$$deg\left(\sum_{\alpha,\beta,\gamma}c_{\alpha,\beta,\gamma}\underline{x}^{\alpha}\underline{\partial_{x}}^{\beta}\partial_{t}^{\gamma}\right) = \max\{|\alpha| + |\beta| + \gamma \mid c_{\alpha,\beta,\gamma} \neq 0\}.$$

• Any left (resp. right) ideal I of D has a finite Gröbner basis.

Holonomy

Holonomic function

A function f is holonomic if for each ∂_i and for ∂_t it satisfies a LODE with polynomial coefficients.

Annihilator of f

The set
$$Ann(f) \stackrel{\mathsf{def}}{=} \{L \in D \mid L \cdot f = 0\}$$
 is a left ideal

Link between functions and operators

f is characterized by its annihilator: $D \cdot f \simeq D / \operatorname{Ann}(f)$.

Creative telescoping

Assumption: the integral of a derivative is zero For any $b \in D$ and $i \in [[1, n]], \int_{\gamma} \partial_i b \cdot f dx = 0$.

Creative telescoping

Find $\ell \in \mathbb{N}$, a_1, \ldots , $a_\ell \in \mathbb{K}(t)$ and b_1, \ldots , $b_n \in D$ such that

$$\left(a_{\ell}(t)\partial_t^{\ell}+\cdots+a_1(t)\partial_t+a_0(t)\right)\cdot f=\sum_{i=1}^n\partial_ib_i\cdot f$$

after integration we get

$$\left(a_{\ell}(t)\partial_t^{\ell}+\cdots+a_1(t)\partial_t+a_0\right)\cdot\int_{\gamma}f\underline{dx}=0$$

Algebraic analog of creative telescoping

Creative telescoping

Find $\ell \in \mathbb{N}$, a_1, \ldots , $a_\ell \in \mathbb{K}(t)$ and $b_1, \ldots, b_n \in D$ such that

$$\left(a_{\ell}(t)\partial_t^{\ell}+\cdots+a_1(t)\partial_t+a_0(t)\right)\cdot f=\sum_{i=1}^n\partial_ib_i\cdot f$$

Algebraic analog

Compute the telescoping ideal $\mathcal{I}(f) = \left(\operatorname{Ann}(f) + \sum_{i=1}^{n} \partial_i D\right) \cap \mathbb{K}(t) \langle \partial_t \rangle$

Algebraic analog of creative telescoping

Creative telescoping

Find $\ell \in \mathbb{N}$, a_1, \ldots , $a_\ell \in \mathbb{K}(t)$ and $b_1, \ldots, b_n \in D$ such that

$$\left(a_{\ell}(t)\partial_t^{\ell}+\cdots+a_1(t)\partial_t+a_0(t)\right)\cdot f=\sum_{i=1}^n\partial_ib_i\cdot f$$

Algebraic analog

Compute the telescoping ideal
$$\mathcal{I}(f) = \left(\operatorname{Ann}(f) + \sum_{i=1}^{n} \partial_i D\right) \cap \mathbb{K}(t) \langle \partial_t \rangle$$

Theorem

f holonomic $\implies \mathcal{I}(f)$ non-zero.

Takayama's algorithm for integration¹

Difficulty: Ann $(f) + \sum_{i=1}^{n} \partial_i D$ is not a left *D*-ideal. But it is an infinite rank left $\mathbb{K}(t) \langle \partial_t, \underline{\partial_x} \rangle$ -module.

¹Takayama 1990, (improved in Chyzak-Salvy98 but not presented today)

Takayama's algorithm for integration¹

Difficulty: Ann(f) + $\sum_{i=1}^{n} \partial_i D$ is not a left *D*-ideal. But it is an infinite rank left $\mathbb{K}(t) \langle \partial_t, \underline{\partial_x} \rangle$ -module.

Takayama's algorithm

Input: Ann(f)

Output: non-trivial subset of $(Ann(f) + \sum_{i=1}^n \partial_i D) \cap \mathbb{K}(t) \langle \partial_t \rangle$

- Take generators of $Ann(f) + \sum_{i=1}^{n} \partial_i D$ up to a certain degree.
- Eliminate \underline{x} and ∂_x via Gröbner basis computation
- If we find an operator without \underline{x} and $\underline{\partial}_{\underline{x}}$ return it otherwise increase the degree bound and start again.

¹Takayama 1990, (improved in Chyzak-Salvy98 but not presented today)

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \, dx$ for $a \in D$ and f holonomic

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \, dx$ for $a \in D$ and f holonomic

Subgoal: Construct a $\mathbb{K}(\underline{t})$ -linear map $[.]: D \to D$ s.t.

•
$$a - [a] \in \operatorname{Ann}(f) + \sum_{i=1}^{n} \partial_i D$$
 (reduction)

•
$$[a] = 0$$
 iff $a \in Ann(f) + \sum_{i=1}^{n} \partial_i D$ (canonical form)

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \, dx$ for $a \in D$ and f holonomic

Subgoal: Construct a $\mathbb{K}(\underline{t})$ -linear map $[.]: D \to D$ s.t.

•
$$a - [a] \in Ann(f) + \sum_{i=1}^{n} \partial_i D$$
 (reduction)
• $[a] = 0$ iff $a \in Ann(f) + \sum_{i=1}^{n} \partial_i D$ (canonical form)

i=1

Creative telescoping algorithm:¹

1 $p_0 \leftarrow [a]; \ \ell \leftarrow 0$ 2 while there is no $\mathbb{K}(t)$ -linear relation $\sum_{i=0}^{\ell} \lambda_i p_i = 0$ 3 $p_{\ell+1} \leftarrow [\partial_t p_{\ell}]; \ \ell \leftarrow \ell + 1$ 4 return $\sum_{i=0}^{\ell} \lambda_i \partial_t^i$

¹Bostan, Chen, Chyzak, Li, Xin

A first "naïve" reduction

Algorithm $[.]_{GD}$:

1 repeat

2
$$a \leftarrow RRem(a, \sum_{i=1}^{n} \partial_i D)$$

- 3 $a \leftarrow LRem(a, Ann(f))$
- 4 until no term in a can be further reduced

5 return a

A first "naïve" reduction

Algorithm $[.]_{GD}$:

1 repeat

2
$$a \leftarrow RRem(a, \sum_{i=1}^{n} \partial_i D)$$

- 3 $a \leftarrow LRem(a, Ann(f))$
- 4 until no term in a can be further reduced

5 return a

The Griffiths-Dwork reduction is a special case of the above algorithm.

Theorem (Dwork 62, Griffiths 69)

If $f = e^q$ with $q \in \mathbb{K}(t)[\underline{x}]$ homogeneous and V(q) is smooth then $[.]_{GD}$ is a canonical form.

A more effective reduction

Precomputation (reminiscent of Takayama's algorithm)

 $\begin{array}{rl} 1 & B_{\sigma} \leftarrow \varnothing \\ 2 & \text{for each gen. } g \text{ of } \operatorname{Ann}(f) + \sum_{i=1}^{n} \partial_{i} D \text{ as } \mathbb{K}(t) \langle \partial_{t}, \underline{\partial_{x}} \rangle \text{-module} \\ & \text{s.t. } \deg_{\underline{x}}(g) \leq \sigma \\ 3 & B_{\sigma} \leftarrow B_{\sigma} \cup \{[g]_{GD}\} \\ 4 & B_{\sigma} \leftarrow GB(B_{\sigma}) \text{ over } \mathbb{K}(t) \langle \partial_{t} \rangle \\ 5 & \text{return } B_{\sigma} \end{array}$

Algorithm $[.]^{\sigma}_{T}$:

1 return LRem([a]_{GD}, B_{σ}) over $\mathbb{K}(t)\langle \partial_t \rangle$

A more effective reduction

Precomputation (reminiscent of Takayama's algorithm)

1
$$B_{\sigma} \leftarrow \emptyset$$

2 for each gen. g of $Ann(f)$ as $\mathbb{K}(t)\langle \partial_t, \underline{\partial_x} \rangle$ -module
s.t. $\deg_{\underline{x}}(g) \leq \sigma$
3 $B_{\sigma} \leftarrow B_{\sigma} \cup \{[g]_{GD}\}$
4 $B_{\sigma} \leftarrow GB(B_{\sigma})$ over $\mathbb{K}(t)\langle \partial_t \rangle$
5 return B_{σ}

Algorithm $[.]^{\sigma}_{T}$:

1 return LRem([a]_{GD}, B_{σ}) over $\mathbb{K}(t)\langle \partial_t \rangle$

A more effective reduction

 $I = \{g \in \mathsf{Ann}(f) \mid \mathsf{Im}(g) \in \mathbb{K}[\underline{x}]\langle \partial_t \rangle \}$

Precomputation (reminiscent of Takayama's algorithm)

 $\begin{array}{rl} 1 & B_{\sigma} \leftarrow \varnothing \\ 2 & \text{for each gen. } g \text{ of } \operatorname{Ann}(f) \text{ as } \mathbb{K}(t) \langle \partial_t, \underline{\partial_x} \rangle \text{-module} \\ & \text{ s.t. } \deg_x(g) \leq \sigma \\ 3 & \text{ if } \operatorname{Im}(g) \text{ is not reducible by } I \\ 4 & B_{\sigma} \leftarrow B_{\sigma} \cup \{[g]_{GD}\} \\ 5 & B_{\sigma} \leftarrow GB(B_{\sigma}) \text{ over } \mathbb{K}(t) \langle \partial_t \rangle \\ 6 & \text{ return } B_{\sigma} \end{array}$

Algorithm $[.]^{\sigma}_{T}$:

1 return LRem([a]_{GD}, B_{σ}) over $\mathbb{K}(t)\langle \partial_t \rangle$

A more effective reduction $I = \{g \in Ann(f) \mid Im(g) \in \mathbb{K}[\underline{x}] \langle \partial_t \rangle \}$

Precomputation (reminiscent of Takayama's algorithm)

Algorithm $[.]^{\sigma}_{T}$:

1 return LRem([a]_{GD}, B_{σ}) over $\mathbb{K}(t)\langle \partial_t \rangle$

Theorem

For any $a \in Ann(f) + \sum_{i=1}^{n} \partial_i D$, $[a]_T^{\sigma} = 0$ for σ large enough.

Future work

•	Algorithm to find a good σ	(done)
•	Variant that uses evaluation/interpolation	(WIP)
•	Implementation in Julia	(WIP)