A Reduction-Based Creative Telescoping Algorithm for Multiple Integrals

Hadrien Brochet,
Frédéric Chyzak, Pierre Lairez
Inria Saclay

JNCF 2024

A symbolic integration problem

$$
\text { Let } I(t)=\int_{\gamma} \frac{d x d y d z}{1-(1-x y) z-t x y z(1-x)(1-y)(1-z)} \quad \text { (g.f. of Apéry numbers) }
$$

The objective is to compute a lin. ord. diff. eq. (LODE) for I :

$$
t^{2}\left(t^{2}-34 t+1\right) \frac{\partial^{3} I}{\partial t^{3}}+3 t\left(2 t^{2}-51 t+1\right) \frac{\partial^{2} I}{\partial t^{2}}+\left(7 t^{2}-112 t+1\right) \frac{\partial I}{\partial t}+(t-5) I=0 .
$$

A symbolic integration problem

$$
\text { Let } I(t)=\int_{\gamma} \frac{d x d y d z}{1-(1-x y) z-t x y z(1-x)(1-y)(1-z)} \quad \text { (g.f. of Apéry numbers) }
$$

The objective is to compute a lin. ord. diff. eq. (LODE) for I :
$t^{2}\left(t^{2}-34 t+1\right) \frac{\partial^{3} I}{\partial t^{3}}+3 t\left(2 t^{2}-51 t+1\right) \frac{\partial^{2} I}{\partial t^{2}}+\left(7 t^{2}-112 t+1\right) \frac{\partial I}{\partial t}+(t-5) I=0$.
With this LODE it is possible to

1. compute a series expansion,
2. evaluate the integral numerically,
3. prove identities involving $I(t)$.

Algebra of differential operators

Let D be the algebra $\mathbb{K}(t)[\underline{x}]\left\langle\partial_{t}, \underline{\partial}_{\underline{x}}\right\rangle$ where each pair of variables commutes except $\partial_{i} x_{i}=x_{i} \partial_{i}+1, \partial_{t} t=t \partial_{t}+1$

Algebra of differential operators

Let D be the algebra $\mathbb{K}(t)[\underline{x}]\left\langle\partial_{t}, \underline{\partial}_{\underline{x}}\right\rangle$ where each pair of variables commutes except $\partial_{i} x_{i}=x_{i} \partial_{i}+1, \bar{\partial}_{t} t=t \partial_{t}+1$

- It acts on C^{∞} functions: $x_{i} \cdot f=x_{i} f$ and $\partial_{i} \cdot f=\frac{\partial f}{\partial x_{i}}\left(\right.$ resp. $\left.t, \partial_{t}\right)$.

Algebra of differential operators

Let D be the algebra $\mathbb{K}(t)[\underline{x}]\left\langle\partial_{t}, \partial_{\underline{x}}\right\rangle$ where each pair of variables commutes except $\partial_{i} x_{i}=x_{i} \partial_{i}+1, \bar{\partial}_{t} t=t \partial_{t}+1$

- It acts on C^{∞} functions: $x_{i} \cdot f=x_{i} f$ and $\partial_{i} \cdot f=\frac{\partial f}{\partial x_{i}}\left(\right.$ resp. $\left.t, \partial_{t}\right)$.
- It has a monomial basis as $\mathbb{K}(t)$-vector space: $\left(\underline{x}^{\alpha} \underline{\partial}_{x}^{\beta} \partial_{t}^{\gamma}\right)_{\alpha, \beta, \gamma}$.
- It has a notion of degree:

$$
\operatorname{deg}\left(\sum_{\alpha, \beta, \gamma} c_{\alpha, \beta, \gamma} \underline{x}^{\alpha} \underline{\partial}^{\beta} \partial_{t}^{\gamma}\right)=\max \left\{|\alpha|+|\beta|+\gamma \mid c_{\alpha, \beta, \gamma} \neq 0\right\}
$$

- Any left (resp. right) ideal / of D has a finite Gröbner basis.

Holonomy

Holonomic function
A function f is holonomic if for each ∂_{i} and for ∂_{t} it satisfies a LODE with polynomial coefficients.

Annihilator of f
The set $\operatorname{Ann}(f) \stackrel{\text { def }}{=}\{L \in D \mid L \cdot f=0\}$ is a left ideal
Link between functions and operators
f is characterized by its annihilator: $D \cdot f \simeq D / \operatorname{Ann}(f)$.

Creative telescoping

Assumption: the integral of a derivative is zero
For any $b \in D$ and $i \in \llbracket 1, n \rrbracket, \int_{\gamma} \partial_{i} b \cdot f \underline{d x}=0$.
Creative telescoping
Find $\ell \in \mathbb{N}, a_{1}, \ldots, a_{\ell} \in \mathbb{K}(t)$ and $b_{1}, \ldots, b_{n} \in D$ such that

$$
\left(a_{\ell}(t) \partial_{t}^{\ell}+\cdots+a_{1}(t) \partial_{t}+a_{0}(t)\right) \cdot f=\sum_{i=1}^{n} \partial_{i} b_{i} \cdot f
$$

after integration we get

$$
\left(a_{\ell}(t) \partial_{t}^{\ell}+\cdots+a_{1}(t) \partial_{t}+a_{0}\right) \cdot \int_{\gamma} f \underline{d x}=0
$$

Algebraic analog of creative telescoping

Creative telescoping
Find $\ell \in \mathbb{N}, a_{1}, \ldots, a_{\ell} \in \mathbb{K}(t)$ and $b_{1}, \ldots, b_{n} \in D$ such that

$$
\left(a_{\ell}(t) \partial_{t}^{\ell}+\cdots+a_{1}(t) \partial_{t}+a_{0}(t)\right) \cdot f=\sum_{i=1}^{n} \partial_{i} b_{i} \cdot f
$$

Algebraic analog
Compute the telescoping ideal $\mathcal{I}(f)=\left(\operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D\right) \cap \mathbb{K}(t)\left\langle\partial_{t}\right\rangle$

Algebraic analog of creative telescoping

Creative telescoping
Find $\ell \in \mathbb{N}, a_{1}, \ldots, a_{\ell} \in \mathbb{K}(t)$ and $b_{1}, \ldots, b_{n} \in D$ such that

$$
\left(a_{\ell}(t) \partial_{t}^{\ell}+\cdots+a_{1}(t) \partial_{t}+a_{0}(t)\right) \cdot f=\sum_{i=1}^{n} \partial_{i} b_{i} \cdot f
$$

Algebraic analog
Compute the telescoping ideal $\mathcal{I}(f)=\left(\operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D\right) \cap \mathbb{K}(t)\left\langle\partial_{t}\right\rangle$
Theorem
f holonomic $\Longrightarrow \mathcal{I}(f)$ non-zero.

Takayama's algorithm for integration ${ }^{1}$

Difficulty: $\operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D$ is not a left D-ideal.
But it is an infinite rank left $\mathbb{K}(t)\left\langle\partial_{t}, \underline{\partial_{\chi}}\right\rangle$-module.

Takayama's algorithm for integration ${ }^{1}$

Difficulty: $\operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D$ is not a left D-ideal.
But it is an infinite rank left $\mathbb{K}(t)\left\langle\partial_{t}, \underline{\partial_{\chi}}\right\rangle$-module.

Takayama's algorithm

Input: Ann(f)
Output: non-trivial subset of $\left(\operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D\right) \cap \mathbb{K}(t)\left\langle\partial_{t}\right\rangle$

- Take generators of $\operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D$ up to a certain degree.
- Eliminate \underline{x} and $\underline{\partial_{x}}$ via Gröbner basis computation
- If we find an operator without \underline{x} and $\underline{\partial_{\underline{x}}}$ return it otherwise increase the degree bound and start again.

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \underline{d x}$ for $a \in D$ and f holonomic

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \underline{d x}$ for $a \in D$ and f holonomic
Subgoal: Construct a $\mathbb{K}(\underline{t})$-linear map [.] : $D \rightarrow D$ s.t.

- $a-[a] \in \operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D$
(reduction)
- $[a]=0$ iff $a \in \operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D$
(canonical form)

Creative telescoping using reductions

Goal: Find a LODE for $\int_{\gamma} a \cdot f \underline{d x}$ for $a \in D$ and f holonomic
Subgoal: Construct a $\mathbb{K}(\underline{t})$-linear map [.] : $D \rightarrow D$ s.t.

- $a-[a] \in \operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D$
(reduction)
- $[a]=0$ iff $a \in \operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D$
(canonical form)

Creative telescoping algorithm: ${ }^{1}$

$1 p_{0} \leftarrow[a] ; \quad \ell \leftarrow 0$
2 while there is no $\mathbb{K}(t)$-linear relation $\sum_{i=0}^{\ell} \lambda_{i} p_{i}=0$
$3 \quad p_{\ell+1} \leftarrow\left[\partial_{t} p_{\ell}\right] ; \quad \ell \leftarrow \ell+1$
4 return $\sum_{i=0}^{\ell} \lambda_{i} \partial_{t}^{i}$

${ }^{1}$ Bostan, Chen, Chyzak, Li, Xin

A first "naïve" reduction

Algorithm [.] ${ }_{G D}$:
1 repeat
$2 \quad a \leftarrow \operatorname{RRem}\left(a, \sum_{i=1}^{n} \partial_{i} D\right)$
$3 \quad a \leftarrow \operatorname{LRem}(a, \operatorname{Ann}(f))$
4 until no term in a can be further reduced
5 return a

A first "naïve" reduction

Algorithm [.] ${ }_{G D}$:

1 repeat

```
\(2 \quad a \leftarrow \operatorname{RRem}\left(a, \sum_{i=1}^{n} \partial_{i} D\right)\)
\(3 \quad a \leftarrow \operatorname{LRem}(a, \operatorname{Ann}(f))\)
```

4 until no term in a can be further reduced
5 return a
The Griffiths-Dwork reduction is a special case of the above algorithm.

Theorem (Dwork 62, Griffiths 69)
If $f=e^{q}$ with $q \in \mathbb{K}(t)[\underline{x}]$ homogeneous and $V(q)$ is smooth then [.] $]_{G D}$ is a canonical form.

A more effective reduction

Precomputation (reminiscent of Takayama's algorithm)

$1 B_{\sigma} \leftarrow \varnothing$
2 for each gen. g of $\operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D$ as $\mathbb{K}(t)\left\langle\partial_{t}, \underline{\partial_{X}}\right\rangle$-module s.t. $\operatorname{deg}_{\underline{x}}(g) \leq \sigma$
$3 \quad B_{\sigma} \leftarrow B_{\sigma} \cup\left\{[g]_{G D}\right\}$
$4 B_{\sigma} \leftarrow G B\left(B_{\sigma}\right)$ over $\mathbb{K}(t)\left\langle\partial_{t}\right\rangle$
5 return B_{σ}

Algorithm [.] $]_{T}^{\sigma}$:
1 return $\operatorname{LRem}\left([a]_{G D}, B_{\sigma}\right)$ over $\mathbb{K}(t)\left\langle\partial_{t}\right\rangle$

A more effective reduction

Precomputation (reminiscent of Takayama's algorithm)
$1 B_{\sigma} \leftarrow \varnothing$
2 for each gen. g of $\operatorname{Ann}(f)$ as $\mathbb{K}(t)\left\langle\partial_{t}, \underline{\partial_{X}}\right\rangle$-module s.t. $\operatorname{deg}_{\underline{x}}(g) \leq \sigma$
$3 \quad B_{\sigma} \leftarrow B_{\sigma} \cup\left\{[g]_{G D}\right\}$
$4 B_{\sigma} \leftarrow G B\left(B_{\sigma}\right)$ over $\mathbb{K}(t)\left\langle\partial_{t}\right\rangle$
5 return B_{σ}

Algorithm [.] $]_{T}^{\sigma}$:
1 return $\operatorname{LRem}\left([a]_{G D}, B_{\sigma}\right)$ over $\mathbb{K}(t)\left\langle\partial_{t}\right\rangle$

A more effective reduction

$$
I=\left\{g \in \operatorname{Ann}(f) \mid \operatorname{lm}(g) \in \mathbb{K}[\underline{x}]\left\langle\partial_{t}\right\rangle\right\}
$$

Precomputation (reminiscent of Takayama's algorithm)
$1 B_{\sigma} \leftarrow \varnothing$
2 for each gen. g of $\operatorname{Ann}(f)$ as $\mathbb{K}(t)\left\langle\partial_{t}, \underline{\partial_{X}}\right\rangle$-module s.t. $\operatorname{deg}_{\underline{x}}(g) \leq \sigma$

3 if $\operatorname{Im}(g)$ is not reducible by 1
$4 \quad B_{\sigma} \leftarrow B_{\sigma} \cup\left\{[g]_{G D}\right\}$
$5 B_{\sigma} \leftarrow G B\left(B_{\sigma}\right)$ over $\mathbb{K}(t)\left\langle\partial_{t}\right\rangle$
6 return B_{σ}

Algorithm [.] $]_{T}^{\sigma}$:
1 return $\operatorname{LRem}\left([a]_{G D}, B_{\sigma}\right)$ over $\mathbb{K}(t)\left\langle\partial_{t}\right\rangle$

A more effective reduction

$$
I=\left\{g \in \operatorname{Ann}(f) \mid \operatorname{Im}(g) \in \mathbb{K}[\underline{x}]\left\langle\partial_{t}\right\rangle\right\}
$$

Precomputation (reminiscent of Takayama's algorithm)
$1 B_{\sigma} \leftarrow \varnothing$
2 for each gen. g of $\operatorname{Ann}(f)$ as $\mathbb{K}(t)\left\langle\partial_{t}, \underline{\partial_{X}}\right\rangle$-module s.t. $\operatorname{deg}_{\underline{x}}(g) \leq \sigma$

3 if $\operatorname{Im}(g)$ is not reducible by 1
$4 \quad B_{\sigma} \leftarrow B_{\sigma} \cup\left\{[g]_{G D}\right\}$
$5 \quad B_{\sigma} \leftarrow G B\left(B_{\sigma}\right)$ over $\mathbb{K}(t)\left\langle\partial_{t}\right\rangle$
6 return B_{σ}

Algorithm [.] $]_{T}^{\sigma}$:
1 return $\operatorname{LRem}\left([a]_{G D}, B_{\sigma}\right)$ over $\mathbb{K}(t)\left\langle\partial_{t}\right\rangle$
Theorem
For any $a \in \operatorname{Ann}(f)+\sum_{i=1}^{n} \partial_{i} D,[a]_{T}^{\sigma}=0$ for σ large enough.

Future work

- Algorithm to find a good σ
- Variant that uses evaluation/interpolation
- Implementation in Julia
(done)
(WIP)
(WIP)

