Faster Multivariate Integration in D-modules

Hadrien Brochet

Joint work with Frédéric Chyzak and Pierre Lairez

Ínría_

Pascaline Seminar

June 5, 2025

https://arxiv.org/abs/2504.12724

A symbolic integration problem

Let
$$I(t) = \int \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a linear differential equation (LDE) for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3} I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2} I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

A symbolic integration problem

Let
$$I(t) = \int\limits_{\infty} \frac{dx \, dy \, dz}{1 - (1 - xy)z - txyz(1 - x)(1 - y)(1 - z)}$$
 (g.f. of Apéry numbers)

The objective is to compute a linear differential equation (LDE) for I:

$$t^{2}(t^{2}-34t+1)\frac{\partial^{3} I}{\partial t^{3}}+3t(2t^{2}-51t+1)\frac{\partial^{2} I}{\partial t^{2}}+(7t^{2}-112t+1)\frac{\partial I}{\partial t}+(t-5)I=0.$$

With this LDE it is possible to

- 1. compute a series expansion,
- 2. evaluate the integral numerically,
- 3. prove identities involving I(t).

Other examples of parametric integrals

The method of creative telescoping can deal with:

orthogonal polynomials

$$A_n(p) = \int_{-1}^1 \frac{e^{-px} T_n(x)}{\sqrt{1-x^2}} dx,$$

special functions

$$B(c) = \int_0^\infty \int_0^\infty \mathsf{J}_1(x) \, \mathsf{J}_1(y) \, \mathsf{J}_2(c\sqrt{xy}) \frac{dxdy}{e^{x+y}},$$

semi-algebraic integration domains

$$C_{n,s}(z) = \int_{x^2+y^2 \le z} y^s \, J_n(x) dx dy.$$

Motivating examples of applications

- Computation of volumes of compact semi-algebraic sets up to a prescribed precision 2^{-p} (2019: Lairez-Mezzarobba-Safey El Din)
- Computation of the generating functions of some walks with small steps in the quarter plane (2017: Bostan-Chyzak-van Hoeij-Kauers-Pech)
- Computation of Feynman integrals for theoretical physics (e.g. 2015: Ablinger-Behring-Blümlein-De Freitas-von Manteuffel-Schneider)
- Counting *k*-regular graphs (2005: Chyzak-Mishna-Salvy, 2025: Chyzak-Mishna)

Motivating examples of applications

- Computation of volumes of compact semi-algebraic sets up to a prescribed precision 2^{-p} (2019: Lairez-Mezzarobba-Safey El Din)
- Computation of the generating functions of some walks with small steps in the quarter plane (2017: Bostan-Chyzak-van Hoeij-Kauers-Pech)
- Computation of Feynman integrals for theoretical physics (e.g. 2015: Ablinger-Behring-Blümlein-De Freitas-von Manteuffel-Schneider)
- Counting *k*-regular graphs (2005: Chyzak-Mishna-Salvy, 2025: Chyzak-Mishna)

NEW! Counting *k*-regular graphs for *k* up to 8 (at the end)

The method of Creative Telescoping

Let $I(t) = \int_a^b f(x, t) dx$.

Creative telescoping (univariate integration w.r.t x)

Find $\ell \in \mathbb{N}$, $a_0, \ldots, a_\ell \in \mathbb{K}(t)$ and a function g s.t.

$$a_{\ell}(t) rac{\partial^{\ell} f(x,t)}{\partial t^{\ell}} + \cdots + a_{1}(t) rac{\partial f(x,t)}{\partial t} + a_{0}(t) f(x,t) = rac{\partial g(x,t)}{\partial x}.$$

After integration, we obtain

$$a_{\ell}(t)\frac{\partial^{\ell}I(t)}{\partial t^{\ell}}+\cdots+a_{1}(t)\frac{\partial I(t)}{\partial t}+a_{0}I(t)=\underbrace{g(b,t)-g(a,t)}_{ ext{often zero}}.$$

The method of Creative Telescoping

Write $\mathbf{x} = x_1, \dots, x_n$.

Creative telescoping (multivariate integration w.r.t x)

Find $\ell \in \mathbb{N}, a_1, \ldots, a_\ell \in \mathbb{K}(t)$ and functions g_1, \ldots, g_n s.t.

$$a_{\ell}(t)\frac{\partial^{\ell}f(\mathbf{x},t)}{\partial t^{\ell}}+\cdots+a_{1}(t)\frac{\partial f(\mathbf{x},t)}{\partial t}+a_{0}(t)f(\mathbf{x},t)=\sum_{i=1}^{n}\frac{\partial g_{i}(\mathbf{x},t)}{\partial x_{i}}.$$

Let $I(t) = \int_{\gamma} f(\mathbf{x}, t) d\mathbf{x}$. After integration, we obtain

$$a_{\ell}(t)\frac{\partial^{\ell}I(t)}{\partial t^{\ell}}+\cdots+a_{1}(t)\frac{\partial I(t)}{\partial t}+a_{0}I(t)=\sum_{i=1}^{n}\int_{\gamma}\frac{\partial g_{i}(\mathbf{x},t)}{\partial x_{i}}d\mathbf{x}.$$

0 assuming γ has natural boundaries

Algebra of Differential Operators: Weyl algebra

The *n*-th Weyl algebra W_n over \mathbb{K} is

- generated by the variables $x_1, \ldots, x_n, \partial_1, \ldots, \partial_n$ and
- subject to the relations $[\partial_i, x_i] = 1$ and $[x_i, x_j] = [x_i, \partial_j] = [\partial_i, \partial_j] = 0$ for $i \neq j$

The homogeneous linear differential equation with polynomial coefficients

$$x_1 \frac{\partial^2 y}{\partial x_1 \partial x_2} + (x^2 + 1) \frac{\partial y}{\partial x_1} + y = 0$$

is represented in W_2 by

$$x_1\partial_1\partial_2+(x^2+1)\partial_1+1.$$

Algebra of Differential Operators: rational Weyl algebra

The *n*-th rational Weyl algebra R_n over $\mathbb{K}(x_1,\ldots,x_n)$ is

- generated by the variables $\partial_1, \ldots, \partial_n$ and
- subject to the relations $[\partial_i, x_i] = 1$ and $[x_i, x_j] = [x_i, \partial_j] = [\partial_i, \partial_j] = 0$ for $i \neq j$

The homogeneous linear differential equations with rational coefficients

$$\frac{x_1}{x_2^2+1}\frac{\partial^2 y}{\partial x_1\partial x_2}+(x^2+1)\frac{\partial y}{\partial x_1}+y=0$$

is represented in R_2 by

$$\frac{x_1}{x_2^2+1}\partial_1\partial_2 + (x^2+1)\partial_1 + 1.$$

D-finite functions

Definition

A function f is D-finite if for each ∂_i it satisfies a LODE with polynomial coefficients.

Proposition

f is D-finite if and only if $R_n/\operatorname{ann}_{R_n}(f)$ is a finite dimensional vector space, where $\operatorname{ann}_{R_n}(f)=\{P\in R_n\mid P\cdot f=0\}.$

D-finite functions

Definition

A function f is D-finite if for each ∂_i it satisfies a LODE with polynomial coefficients.

Proposition

f is D-finite if and only if $R_n/\operatorname{ann}_{R_n}(f)$ is a finite dimensional vector space, where $\operatorname{ann}_{R_n}(f)=\{P\in R_n\mid P\cdot f=0\}.$

Example

The function $f = J_0(x - y)$ is D-finite as its annihilators is generated by

$$(x-y)\partial_x^2 + \partial_x + (x-y), \qquad \partial_y - \partial_x$$

which implies

$$R_n/\operatorname{ann}_{R_n}(f)\simeq \mathbb{Q}(x,y)f\oplus \mathbb{Q}(x,y)\partial_x\cdot f.$$

Holonomy

Holonomic module

A module W_n/S is holonomic if its module dimension is exactly n. Or equivalently if for every choice of n+1 variables $I \subset \{x_1 \ldots, x_n, \partial_1, \ldots \partial_n\}$, $\mathbb{K}\langle I \rangle \cap S$ is non-empty.

Holonomic function

A function f is holonomic if the module $W_n/\operatorname{ann}_{W_n}(f)$ is holonomic, where $\operatorname{ann}_{W_n}(f)=\{P\in W_n\mid P\cdot f=0\}.$

Holonomy

Holonomic module

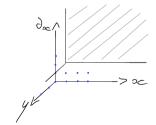
A module W_n/S is holonomic if its module dimension is exactly n. Or equivalently if for every choice of n+1 variables $I \subset \{x_1 \ldots, x_n, \partial_1, \ldots \partial_n\}$, $\mathbb{K}\langle I \rangle \cap S$ is non-empty.

Holonomic function

A function f is holonomic if the module $W_n/\operatorname{ann}_{W_n}(f)$ is holonomic, where $\operatorname{ann}_{W_n}(f)=\{P\in W_n\mid P\cdot f=0\}.$

Example

The same function $f = J_0(x - y)$ is also holonomic as the dimension of $W_n/\operatorname{ann}_{W_n}(f)$ is 2. A basis of this quotient is given by the image of the monomials $x^a \partial_x^b y^c$ such that $x \partial_x^2 \nmid x^a \partial_x^b$.



D-finiteness vs Holonomy

Theorem

A function is D-finite if and only if it is holonomic.

D-finiteness

- Fast computation
- Lacks expressivity
- No general multivariate integration algorithm known

Holonomy

- Useful for proofs of existence and termination
- ⊕ Extends to holonomic distribution ⇒ allows integration over semi-algebraic sets
- Slow computation

Today: Mixed approach

Operators with coefficients in $\mathbb{Q}(t)[\mathbf{x}]$

Previous work (non-exhaustive)

Gröbner basis approaches (holonomy)

- Integration of holonomic functions (Takayama 1990,Oaku-Takayama 1997, Chyzak-Salvy 1998)
- Integration of holonomic functions over semi-algebraic sets (Oaku 2013)

Ansatz-based approaches (D-finite)

- Univariate integration of hyperexponential functions (Almkvist-Zeilberger 1990)
- Univariate integration of D-finite functions (Chyzak 2000)
- Fast heuristic for univariate integration of D-finite functions (Koutschan 2010)

Reduction-based approaches (D-finite)

- Univariate integration of bivariate rational functions (Bostan-Chen-Chyzak-Li 2010)
- Multivariate integration of rational functions (Bostan-Lairez-Salvy 2013, Lairez 2016)
- Univariate integration of D-finite functions (van der Hoeven 2018, Bostan-Chyzak-Lairez-Salvy 2018, Chen-Du-Kauers 2023)

Input of the algorithm

Let
$$I(t) = \int_{\gamma} f(\mathbf{x}, t) d\mathbf{x}$$

Assumptions

- 1. f is holonomic
- 2. γ has natural boundaries, i.e., for any i and $a \in W_n$, $\int_{\gamma} \partial_i a \cdot f(\mathbf{x}, t) d\mathbf{x} = 0$.

Input of the algorithm

Let
$$I(t) = \int_{\gamma} f(\mathbf{x}, t) d\mathbf{x}$$

Assumptions

- 1. f is holonomic
- 2. γ has natural boundaries, i.e., for any i and $a \in W_n$, $\int_{\gamma} \partial_i a \cdot f(\mathbf{x}, t) d\mathbf{x} = 0$.

Data-structure

Assume we know generators of $\operatorname{ann}(f)$ in the algebra W_n over $\mathbb{K}(t)$ and a derivation map $\partial_t:W_n\to W_n$ satisfying

$$\partial_t(\lambda m) = rac{\partial \lambda}{\partial t} m + \lambda \partial_t(m) \quad ext{ for } \lambda \in \mathbb{K}(t) ext{ and } m \in W_n$$

Example of Input

Example

Let $f(x,t) = \frac{1}{x-t}$, which is annihilated by

$$\partial_t - \partial_x$$
 and $\partial_x (x - t)$.

Then f is represented by the ideal in W_1 :

$$W_1(\partial_x(x-t)),$$

and the derivation map $\partial_t:W_1 o W_1$ is defined by

$$\partial_t(x^a\partial_x^b)=x^a\partial_x^{b+1}.$$

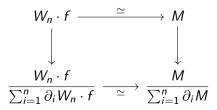
Integral of the module $W_n/\operatorname{ann}(f)$

Definition

The integral of the module $M = W_n / \operatorname{ann}(f)$ is

$$M/\sum_{i=1}^n \partial_i M \simeq W_n/(\operatorname{ann}(f) + \sum_{i=1}^n \partial_i W_n).$$

This yields the following commutative diagram:



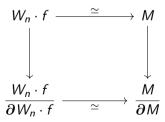
Integral of the module $W_n/\operatorname{ann}(f)$

Definition

The integral of the module $M = W_n / \operatorname{ann}(f)$ is

$$M/\partial M \simeq W_n/(\operatorname{ann}(f) + \partial W_n).$$

This yields the following commutative diagram:



Algebraic analog of creative telescoping

Recall: creative telescoping

Look for a LHS such that there exists functions $g_1, \ldots, g_n \in W_n \cdot f$ satisfying

$$a_{\ell}(t)\frac{\partial^{\ell}f(\mathbf{x},t)}{\partial t^{\ell}}+\cdots+a_{0}(t)f(\mathbf{x},t)=\sum_{i=1}^{n}\frac{\partial_{i}g_{i}(\mathbf{x},t)}{\partial x_{i}}.$$

Algebraic formulation

Find coefficients $a_0, \ldots, a_\ell \in \mathbb{K}(t)$ satisfying

$$a_{\ell}(t)\partial_t^{\ell}(1)+\cdots+a_0(t)\in \operatorname{ann}(f)+\partial W_n.$$

Computing in the quotient $M/\partial M$

Recall
$$M/\partial M \simeq W_n/(\operatorname{ann}(f) + \partial W_n)$$
.

Theorem (Kashiwara)

If f is holonomic, $M/\partial M$ is a finite-dimensional vector space.

Difficulties:

- ann $(f) + \partial W_n$ is the sum of a left and a right module \implies no module structure
- Even though $M/\partial M$ is finite dimensional, W_n and $\operatorname{ann}(f) + \partial W_n$ are not!

Takayama's algorithm

 \forall Use a filtration of W_n by vector spaces:

$$F_q = \bigoplus_{|\alpha|+|\beta| \le q} \mathbb{K} \cdot \mathbf{x}^{\alpha} \boldsymbol{\partial}^{\beta}.$$

Takayama's algorithm 1990 (without parameters)

Fix q and approximate the quotient $W_n/(\operatorname{ann}(f) + \partial W_n)$ by

$$F_q/(\mathsf{ann}(f)\cap F_q+\partial F_{q-1})$$

which is a quotient of two finite-dimensional $\mathbb{K}(t)$ -vector spaces.

Termination criterion

There exists a bound on q to get a basis of $M/\partial M$ based on roots of the b-function (Oaku-Takayama 1997). However, it is costly to compute.

Reduction-based creative telescoping

Goal: Construct a $\mathbb{K}(t)$ -linear map $[.]:W_n \to W_n$ s.t.

•
$$a - [a] \in ann(f) + \partial W_n$$
 (reduction)

•
$$[a] = 0$$
 iff $a \in ann(f) + \partial W_n$ (normal form)

Reduction-based creative telescoping

Goal: Construct a $\mathbb{K}(t)$ -linear map $[.]:W_n \to W_n$ s.t.

•
$$a - [a] \in ann(f) + \partial W_n$$
 (reduction)

• [a] = 0 iff $a \in ann(f) + \partial W_n$ (normal form)

Creative telescoping algorithm

- 1 $p_0 \leftarrow [1]; \quad \ell \leftarrow 0$
- while there is no $\mathbb{K}(t)$ -linear relation $\sum_{i=0}^{\ell} \lambda_i p_i = 0$
 - $p_{\ell+1} \leftarrow [\partial_t(p_\ell)]$ # invariant: $p_\ell \equiv [\partial_t^{\ell+1}(1)]_\eta$ mod ann $(f) + \partial W_n$
- $\ell \leftarrow \ell + 1$
- 5 return $\sum_{i=0}^{\ell} \lambda_i \partial_t^i$
- igoplus Always terminates as $M/\partial M$ is finite dimensional!

"Naïve" reduction

 \forall Use more structure of $ann(f) + \partial W_n$

```
Reduction procedure [.] : W_n \mapsto W_n
```

- 1 repeat
 - $a \leftarrow a \mod \partial W_n$
- $a \leftarrow a \mod \operatorname{ann}(f)$
- 4 **until** no term in a can be further reduced
- 5 return a
- \bigcirc The reduction [.] does not reduce all ann $(f) + \partial W_n$ to zero
- $igoplus ext{But dim}([\operatorname{ann}(f) + \partial W_n] \cap W_n^{\leq q}) \ll \operatorname{dim}((\operatorname{ann}(f) + \partial W_n) \cap W_n^{\leq q})$

Critical pairs

What does $[ann(f) + \partial W_n]$ look like?

It is generated by terms a+d with $\operatorname{lt}(a)=-\operatorname{lt}(d)$ and $a\in\operatorname{ann}(f),d\in\partial W_n$

Critical pairs

What does
$$[ann(f) + \partial W_n]$$
 look like?

It is generated by terms a+d with $\operatorname{lt}(a)=-\operatorname{lt}(d)$ and $a\in\operatorname{ann}(f), d\in\partial W_n$

Example

Take $f=e^{x^2z-y^3}$, a Gröbner basis of $\operatorname{ann}(f)$ for $\operatorname{grevlex}(x,y,z)>\operatorname{grevlex}(\partial_x,\partial_y,\partial_z)$ is

$$\begin{aligned} 2\underline{xz} - \partial_x, & 3\underline{y^2} + \partial_y, & \underline{x^2} - \partial_z \\ 4\underline{z^2}\partial_z + 2z - \partial_x^2, & \underline{x}\partial_x - 2z\partial_z \end{aligned}$$

Critical pairs

What does $[ann(f) + \partial W_n]$ look like?

It is generated by terms a+d with lt(a)=-lt(d) and $a\in ann(f), d\in \partial W_n$

Example

Take $f = e^{x^2z-y^3}$, a Gröbner basis of ann(f) for grevlex $(x,y,z) > \text{grevlex}(\partial_x,\partial_y,\partial_z)$ is

$$\begin{aligned} 2\underline{xz} - \partial_x, & 3\underline{y^2} + \partial_y, & \underline{x^2} - \partial_z \\ 4\underline{z^2}\partial_z + 2z - \partial_x^2, & \underline{x}\partial_x - 2z\partial_z \end{aligned}$$

For example z is irreducible by [.] but

$$z = \underbrace{-\frac{1}{6}(4\underline{z^2}\partial_z + 2z - \partial_x^2)}_{\in ann(f)} + \underbrace{\frac{1}{6}(4\underline{\partial_z z^2} - \partial_x^2)}_{\in \partial W_n}$$

The reduction $[.]_{\eta}$

A

 $[ann(f) + \partial W_n]$ may not be a finite dimensional vector space

Fix a monomial order \leq on W_n and let η be a monomial of W_n .

→ Compute instead a basis of

$$E_{\preccurlyeq \eta} := \{ [a+d] \mid a \in \mathsf{ann}(f), d \in \partial W_n, max(\mathsf{Im}(a), \mathsf{Im}(d)) \preccurlyeq \eta \}$$

=\{[a] \| a \in \man(f), \mathbf{Im}(a) \le \eta\}

Critical pair criterion

Let $a \in ann(f)$. If there exists $b \in ann(f)$ and i s.t. $Im(a) = Im(\partial_i b)$, then $[a] \in E_{\prec \eta}$.

The reduction $[.]_{\eta}$

Algorithm for computing $E_{\preccurlyeq \eta}$

```
for each monomial \eta' in \operatorname{Im}(\operatorname{ann}(f)) \cap \operatorname{Im}(\partial W_n) smaller or equal to \eta

if there exists i and b \in \operatorname{ann}(f) s.t. \eta' = \operatorname{Im}(\partial_i b)

continue

pick a \in \operatorname{ann}(f) s.t. \operatorname{Im}(a) = \eta'

B \leftarrow B \cup \{[a]\}

return Echelon(B)
```

The reduction $[.]_{\eta}$

Algorithm for computing $E_{\preccurlyeq \eta}$

```
1 B \leftarrow \emptyset

2 for each monomial \eta' in \operatorname{Im}(\operatorname{ann}(f)) \cap \operatorname{Im}(\partial W_n) smaller or equal to \eta

3 if there exists i and b \in \operatorname{ann}(f) s.t. \eta' = \operatorname{Im}(\partial_i b)

4 continue

5 pick a \in \operatorname{ann}(f) s.t. \operatorname{Im}(a) = \eta'

6 B \leftarrow B \cup \{[a]\}

7 return Echelon(B)
```

Define: $[a]_{\eta} \coloneqq [a] \mod E_{\preccurlyeq \eta}$

How to choose η ?

The reduction $[.]_n$ does not compute a normal form.

 \rightsquigarrow Find a finite-dimensional vector space stable under $[\partial_t(.)]_{\eta}$.

Confinement

A confinement (η, B) for ∂_t is a monomial η and a set of monomials B such that

- 1. $1 \in B$:
- 2. the support of $[\partial_t(m)]_n$ is included in B for any $m \in B$.
- This property is only about monomials, not coefficients!

Computation of a confinement

An algorithm when \preccurlyeq is a total degree order

```
1 q \leftarrow 1
2 \eta \leftarrow largest monomial of degree q
 3 Q \leftarrow 1, B \leftarrow \emptyset
    while Q \setminus B \neq \emptyset
      m \leftarrow an element of Q \setminus B
          if \deg m > q
              q \leftarrow q + 1
              goto line 3
       Q \leftarrow Q \cup \operatorname{supp}([\partial_t(m)]_n)
     B \leftarrow B \cup \{m\}
10
    return (\eta, B)
```

Final algorithm

Creative telescoping algorithm

```
\begin{array}{ll} 1 & \eta, \underline{\ }\leftarrow \text{ compute a confinement for } \partial_t \\ 2 & p_0 \leftarrow [1]_{\eta}; \quad \ell \leftarrow 0 \\ 3 & \text{ while there is no } \mathbb{K}(t)\text{-linear relation } \sum_{i=0}^{\ell} \lambda_i p_i = 0 \\ 4 & p_{\ell+1} \leftarrow [\partial_t(p_{\ell})]_{\eta} \quad \# \text{ invariant: } p_{\ell} \equiv [\partial_t^{\ell+1}(1)]_{\eta} \mod \operatorname{ann}(f) + \partial W_n \\ 5 & \ell \leftarrow \ell + 1 \\ 6 & \mathbf{return } \sum_{i=0}^{\ell} \lambda_i \partial_t^i \end{array}
```

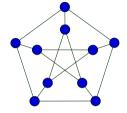
- \bullet Always terminates even though $[.]_{\eta}$ is not a normal form.
- The returned LDE may not be of minimal order.

k-regular graph: every vertex has degree k

Problem statement

 $c_n^{(k)}$: number of k-regular graphs on n vertices.

Goal: compute a LDE for $\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n$ for fixed k



Petersen's graph is 3-regular

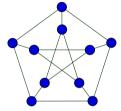
 $^{^{1}\}mbox{It}$ is actually a variant of creative telescoping for scalar products of symmetric functions

k-regular graph: every vertex has degree k

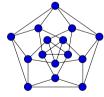
Problem statement

 $c_n^{(k)}$: number of k-regular graphs on n vertices.

Goal: compute a LDE for $\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n$ for fixed k



Petersen's graph is 3-regular



A 4-regular graph

Previous work

- Read (1959): up to k = 3
- McKay, Wormald (≈ 1959): k = 4
- Chyzak, Mishna, Salvy (2005): k = 4 using C.T.¹
- Chyzak, Mishna (2025): up to k = 7 using red.-based C.T.¹

¹It is actually a variant of creative telescoping for scalar products of symmetric functions

→ Building on Chyzak-Mishna-Salvy (2005) we obtained

$$\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n = \operatorname{res}_{\mathbf{x}} F(t, \mathbf{x})$$

where F is a laurent series in $\mathbb{K}[[\mathbf{x}]][\mathbf{x}^{-1}]((t))$ implicitly represented by an ideal $I \subset \mathbb{K}(t)[\mathbf{x}]\langle \partial_t, \partial_{\mathbf{x}} \rangle$ satisfying for any $L \in I$, $\operatorname{res}_{\mathbf{x}} L(F) = 0$.

→ Building on Chyzak-Mishna-Salvy (2005) we obtained

$$\sum_{n=0}^{\infty} \frac{c_n^{(k)}}{n!} t^n = \operatorname{res}_{\mathbf{x}} F(t, \mathbf{x})$$

where F is a laurent series in $\mathbb{K}[[\mathbf{x}]][\mathbf{x}^{-1}]((t))$ implicitly represented by an ideal $I \subset \mathbb{K}(t)[\mathbf{x}]\langle \partial_t, \partial_{\mathbf{x}} \rangle$ satisfying for any $L \in I$, $\operatorname{res}_{\mathbf{x}} L(F) = 0$.

Example

For k = 2, I is generated by

$$(t-1)x_1 - t\partial_1,$$
 $x_2 - t$
 $2(t-1)^2\partial_t - \partial_1^2 + 2(t-1)^2\partial_2 + t^2(t-1)$

and we obtain the LDE

$$2(t-1)dt+t^2.$$

Benchmarks

Because of the polynomial torsion, no creative telescoping algorithms over $\mathbb{Q}(t, \mathbf{x})$ work here!

k	2	3	4	5	6	7	8
Tak-Macaulay2	0.02s	1.7s	535s	>90m	-	-	-
Tak-Singular	<1s	<1s	25s	>90m	-	-	-
Ch/Mi-Maple ¹	0.04	0.08	0.2	1.96	52.3s	9h	-
Our algo-Julia ¹²	7.2s	7.6s	8.7s	7.9s	8.5s	363s	7h28min

¹Results available at https://files.inria.fr/chyzak/kregs/

 $^{{}^2} Code \ available \ at \ https://github.com/HBrochet/MultivariateCreativeTelescoping.jl$