FASTER INTEGRATION OF D-MODULES Hadrien Brochet, Frédéric Chyzak, Pierre Lairez

Inria Saclay

Notations

• $W_n \coloneqq \mathbb{K}[x_1, \dots, x_n] \langle \partial_1, \dots, \partial_n \rangle$

• Ann $(f) \coloneqq \{L \in W_n \mid L \cdot f = 0\}$

• $\partial M \coloneqq \sum_{i=1}^n \partial_i M$

the *n*th Weyl algebra over a field \mathbb{K}

the annihilator of (e.g.) a C^{∞} function f

a notation for any set M

In Takayama's paper not every variable ∂_i are elimi-

nated.

Integration of parametric integrals

Let $f(t, \mathbf{x})$ be a function depending on a new parameter t and let $\mathbb{K}(t)$ be the new base field. We assume that the derivation ∂_t defines a morphism of W_n -module onto $W_n / \operatorname{Ann}(f)$.

Problem 2: Compute a LDE for the parametric integral $\int_{\gamma} f(t, x) dx$.

The problem of integration of D-modules

A function f is represented by its annihilator via the following quotient of left W_n -modules: $f \iff W_n \cdot f \simeq W_n / \operatorname{Ann}(f)$

The integral of f over a cycle γ is represented by the same module up to derivatives:

$$\int_{\gamma} f(\mathbf{x}) \mathbf{dx} \quad \longleftrightarrow \quad \frac{W_n \cdot f}{\partial W_n \cdot f} \simeq \underbrace{\frac{W_n}{\operatorname{Ann}(f)} + \underbrace{\partial W_n}_{\operatorname{is a left } W_n \operatorname{-module}}_{\operatorname{is a right } W_n \operatorname{-module}}$$

Theorem (Kashiwara)

If $\operatorname{Ann}(f)$ is holonomic, then $W_n/(\operatorname{Ann}(f) + \partial W_n)$ is a finite-dimensional vector space.

Problem: How to compute a basis of $\mathbf{W_n}/(\mathbf{Ann}(\mathbf{f}){+}\boldsymbol{\partial}\mathbf{W_n})$?

Difficulties

1. $W_n/(\operatorname{Ann}(f) + \partial W_n)$ is not a W_n -module but only a K-vector space.

2. $W_n/(\operatorname{Ann}(f) + \partial W_n)$ is the quotient of two infinite-dimensional K-vector spaces.

This is solved by decomposing the successive derivatives $\partial_t^{\ell}(\bar{1})$ in the basis of $W_n/(\operatorname{Ann}(f) + \partial W_n)$ until a linear relation is found.

Finding a LDE satisfied by the integral I(t)

 $p_0 \leftarrow 1; \ \ell \leftarrow 0$ $B \leftarrow a \text{ basis of } W_n / (\operatorname{Ann}(f) + \partial W_n)$ 3 while there exists no $\mathbb{K}(t)$ -linear relation $\sum_{i=0}^{\ell} \lambda_i p_i = 0$ $p_{\ell+1} \leftarrow \text{Decomposition of } \partial_t^{\ell+1}(\bar{1}) \text{ in the basis } B$ $\ell \leftarrow \ell + 1$ 6 return $\sum_{i=0}^{\ell} \lambda_i \partial_t^i$

In general the derivation ∂_t is defined on a module of the form W_n^r/S instead of $W_n/\operatorname{Ann}(f)$.

Application to counting k-regular graphs

Let $c_n^{(k)}$ be the number of k-regular graphs on n vertices, that is, the number of graphs with exactly k neighbors.

Goal: Given k compute a LDE for the generating series $\sum_{n} c_{n}^{k} t^{n}$.

The first step is to express this generating series as the formal residue of a power series $F(t, x_1, \ldots, x_k)$:

Takayama's algorithm [2]

The Weyl algebra W_n admits as infinite dimensional K-vector space the filtration

$$F_q = \bigoplus_{|\alpha|+|\beta| \le q} \mathbb{K} \cdot \mathbf{x}^{\alpha} \partial^{\beta}$$

Takayama's algorithm (simplified)

Iteratively compute a basis of the quotient

 $F_q/(\operatorname{Ann}(f) \cap F_q + \partial F_{q-1})$

of finite-dimensional $\mathbb K\text{-vector}$ spaces.

Termination criterion

Oaku and Takayama gave a bound on q to get a basis of the whole vector space $W_n/(\operatorname{Ann}(f) + \partial W_n)$ based on the largest root of the *b*-function of the ideal $\operatorname{Ann}(f)$ associated to a weight vector (w, -w) and a filtration with respect to this weight vector.

New algorithm by reduction

Idea

The vector space $\operatorname{Ann}(f) + \partial W_n$ is the sum of a left and a right W_n -module. We can still use some of this hybrid structure to speed up computations. The idea is to define a K-linear map on W_n that reduces alternatively modulo the left and the right module. This reduction is then used in the new algorithm. $\sum_{n=0} c_n^{(k)} t^n = \operatorname{res}_{\mathbf{x}} F(t, \mathbf{x})$ represented by a derivation ∂_t and an ideal $I \subset W_n$ satisfying $\operatorname{res}_{\mathbf{x}} L \cdot F = 0$ for any $L \in I$. The second step is to apply our algorithm to compute the LDE. We managed to compute

Timings								
k	2	3	4	5	6	7	8	
Tak-Macaulay2	0.02s	1.7s	535s	>90m	_	_	_	
Tak-Singular	< 1s	< 1s	25s	>90m	_	-	_	
Our alg^*	7.2s	7.6s	8.7s	7.9s	8.5s	363s	7h28min	
Fig. 1: Computation time of a LDE satisfied	l by the	generat	ing serie	es of k -reg	ular gra	aphs for	different software and values	of k

* Our algorithm is implemented in Julia and is available on github [1]. Since Julia uses a JIT compilation mode, we included the compilation time of approximately 7.5 seconds in the timings. The timings were recorded on a personal laptop.

a LDE for k up to 8.

Reduction procedure $[.]: W_n \mapsto W_n$

1 repeat

2 $a \leftarrow a \mod \partial W_n$

 $3 \qquad a \leftarrow a \mod \operatorname{Ann}(f)$

4 **until** no term in a can be further reduced

5 return a

Applying the reduction [.] to the vector space F_q can greatly reduce its dimension. **New Algorithm**

Iteratively compute a basis of the quotient of finite-dimensional K-vector spaces

$$\frac{[F_q]}{\operatorname{Ann}(f) \cap F_q + \partial F_{q-1}]} \simeq \frac{[F_q]}{[\operatorname{Ann}(f) \cap F_q]}$$

References

[1] H. Brochet. Repository of the MultivariateCreativeTelescoping.jl package. https://github.com/HBrochet/MultivariateCreativeTelescoping.jl.

[2] N. Takayama. An algorithm of constructing the integral of a module–an infinite dimensional analog of gröbner basis. In *Proceedings of the International Symposium* on Symbolic and Algebraic Computation, ISSAC '90, page 206–211, New York, NY, USA, 1990. Association for Computing Machinery.