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Notations
•Wn := K[x1, . . . , xn]⟨∂1, . . . , ∂n⟩ the nth Weyl algebra over a field K

•Ann(f ) := {L ∈ Wn | L · f = 0} the annihilator of (e.g.) a C∞ function f

•∂M :=
∑n

i=1 ∂iM a notation for any set M

The problem of integration of D-modules

A function f is represented by its annihilator via the following quotient of left Wn-modules:

f ↭ Wn · f ≃ Wn/Ann(f )

The integral of f over a cycle γ is represented by the same module up to derivatives:

Theorem (Kashiwara)

If Ann(f ) is holonomic, then Wn/(Ann(f ) + ∂Wn) is a finite-dimensional vector space.

Problem: How to compute a basis of Wn/(Ann(f)+∂Wn) ?

Difficulties

1.Wn/(Ann(f ) + ∂Wn) is not a Wn-module but only a K-vector space.

2.Wn/(Ann(f ) + ∂Wn) is the quotient of two infinite-dimensional K-vector spaces.

Takayama’s algorithm [2]

The Weyl algebra Wn admits as infinite dimensional K-vector space the filtration

Fq =
⊕

|α|+|β|≤q

K · xα∂β.

Takayama’s algorithm (simplified)

Iteratively compute a basis of the quotient

Fq/(Ann(f ) ∩ Fq + ∂Fq−1)

of finite-dimensional K-vector spaces.

Termination criterion

Oaku and Takayama gave a bound on q to get a basis of the whole vector space
Wn/(Ann(f ) + ∂Wn) based on the largest root of the b-function of the ideal Ann(f )
associated to a weight vector (w,−w) and a filtration with respect to this weight vector.

New algorithm by reduction

Idea

The vector space Ann(f ) +∂Wn is the sum of a left and a right Wn-module. We can still
use some of this hybrid structure to speed up computations.
The idea is to define a K-linear map on Wn that reduces alternatively modulo the left and
the right module. This reduction is then used in the new algorithm.

Reduction procedure [.] : Wn 7→ Wn

1 repeat
2 a← a mod ∂Wn

3 a← a mod Ann(f )
4 until no term in a can be further reduced
5 return a

Applying the reduction [.] to the vector space Fq can greatly reduce its dimension.

New Algorithm

Iteratively compute a basis of the quotient of finite-dimensional K-vector spaces

[Fq]

[Ann(f ) ∩ Fq + ∂Fq−1]
≃ [Fq]

[Ann(f ) ∩ Fq]

Integration of parametric integrals

Let f (t,x) be a function depending on a new parameter t and let K(t) be the new base field.
We assume that the derivation ∂t defines a morphism of Wn-module onto Wn/Ann(f ).

Problem 2: Compute a LDE for the parametric integral
∫
γ f(t,x)dx.

This is solved by decomposing the successive derivatives ∂ℓ
t (1̄) in the basis ofWn/(Ann(f )+

∂Wn) until a linear relation is found.

Finding a LDE satisfied by the integral I(t)

1 p0← 1; ℓ← 0
2 B ← a basis of Wn/(Ann(f ) + ∂Wn)

3 while there exists no K(t)-linear relation
∑ℓ

i=0 λipi = 0
4 pℓ+1← Decomposition of ∂ℓ+1

t (1̄) in the basis B
5 ℓ← ℓ + 1

6 return
∑ℓ

i=0 λi∂
i
t

Application to counting k-regular graphs

Let c
(k)
n be the number of k-regular graphs on n vertices, that is, the number of graphs with

exactly k neighbors.

Goal: Given k compute a LDE for the generating series
∑

n c
k
nt

n.

The first step is to express this generating series as the formal residue of a power series
F (t, x1, . . . , xk):

∞∑
n=0

c(k)n tn = resxF (t,x)

represented by a derivation ∂t and an ideal I ⊂ Wn satisfying resxL ·F = 0 for any L ∈ I .
The second step is to apply our algorithm to compute the LDE. We managed to compute
a LDE for k up to 8.

Timings

k 2 3 4 5 6 7 8

Tak-Macaulay2 0.02s 1.7s 535s >90m - - -
Tak-Singular <1s <1s 25s >90m - - -
Our alg* 7.2s 7.6s 8.7s 7.9s 8.5s 363s 7h28min

Fig. 1: Computation time of a LDE satisfied by the generating series of k-regular graphs for different software and values of k.

* Our algorithm is implemented in Julia and is available on github [1]. Since Julia uses a
JIT compilation mode, we included the compilation time of approximately 7.5 seconds in
the timings. The timings were recorded on a personal laptop.

Fig. 2: A 3-regular graph Fig. 3: A 4-regular graph
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